Different susceptibility of two Botrytis cinerea strains to supercritical CO2 plant extracts


  • Sabina Anžlovar
  • Jasna Dolenc-Koce University of Ljubljana




antifungal activity, Botrytis cinerea, Chamomilla recutita, Helichrysum arenarium, plant extract, supercritical fluid extraction using CO2


Botrytis cinerea is an airborne plant pathogen with a necrotrophic lifestyle. As a generalist, B. cinerea has no host specificity and infects over 500 plant species. There are many studies about phenotypic and genotypic diversity of B. cinerea strains from different regions of the world. Two different morphological strains of B. cinerea were previously isolated also in Slovenia from buckwheat. The morphological diversity of B. cinerea is also reflected in different susceptibility to plant extracts. We tested the susceptibility of two B. cinerea strains derived from buckwheat grain to eleven extracts of plant species Humulus lupulus, Nepeta cataria, Taraxacum officinale, Achillea millefolium, Calendula officinalis, Chamomilla recutita, Helichrysum arenarium, Hypericum perforatum, Juniperus communis, Sambucus nigra and Crataegus sp. obtained by supercritical fluid extraction using CO2 (SFE-CO2). The resistance profiles showed that strain II of B. cinerea was generally susceptible to the action of these SFE-CO2 extracts, whereas strain I was more resistant. The concentration-dependent antifungal activity of the extract of chamomile and sandy everlasting indicates their possible use as a fungicide for both strains of B. cinerea.


Anand, T., Bhaskaran, R., Karthikeyan, T. G., Rajesh, M., Senthilraja, G., 2008. Production of Cell Wall Degrading Enzymes and Toxins by Colletotrichum Capsici and Alternaria Alternata Causing Fruit ROT of Chillies. Journal of Plant Protection Research. 48 (4), https://doi.org/10.2478/v10045-008-0053-2 DOI: https://doi.org/10.2478/v10045-008-0053-2

Anžlovar, S., Dolenc Koce, J., 2014. Antibacterial and antifungal activity of aqueous and organic extracts from indigenous and invasive species of goldenrod (solidago spp.) grown in Slovenia. Phyton - Ann Rei Bot, 54(1), 135–47.

Anžlovar, S., Janeš, D., Dolenc Koce, J. 2020. The Effect of Extracts and Essential Oil from Invasive Solidago spp. and Fallopia japonica on Crop-Borne Fungi and Wheat Germination. Food technology and biotechnology, 58(3), 273-283. https://doi.org/10.17113/ftb. DOI: https://doi.org/10.17113/ftb.

Asadollahi, M., Fekete, E., Karaffa, L., Flipphi, M., Árnyasi, M., Esmaeili, M., 2013. Comparison of Botrytis cinerea populations isolated from two openfield cultivated host plants. Microbiology Research, 168, 379–388. https://doi.org/10.1016/j.micres.2012.12.008 DOI: https://doi.org/10.1016/j.micres.2012.12.008

Avonto, C., Wang, M., Chittiboyina, A.G., Avula, B., Zhao, J., Khan, I.A., 2013. Hydroxylated Bisabolol Oxides: Evidence for Secondary Oxidative Metabolism in Matricaria chamomilla. Journal of Natural Products, 76 (10), 1848-1853. http://dx.doi.org/10.1021/np4003349 DOI: https://doi.org/10.1021/np4003349

Behshti, M., Jahani, M., Aminifard, M. H., Hosseini, S.A., 2020. Essential oils to control Botrytis cinerea in vitro and in vivo on grape fruits. Journal of horticulture and postharvest research, 3(2), 161-172. https://doi.org/10.22077/jhpr.2019.2644.1079

Boddy, L., 2016. Chapter 11 - Fungi, Ecosystems, and Global Change, in: The Fungi, Editor(s): Sarah C. Watkinson, Lynne Boddy, Nicholas P. Money, Academic Press, 361-400. https://doi.org/10.1016/B978-0-12-382034-1.00011-6. DOI: https://doi.org/10.1016/B978-0-12-382034-1.00011-6

Carrasco, H., Robles-Kelly, C., Rubio, J., Olea, A.F., Martínez, R., Silva-Moreno, E., 2017. Antifungal Effect of Polygodial on Botrytis cinerea, a Fungal Pathogen Affecting Table Grapes. International Journal of Molecular Sciences, 18, 2251. https://doi.org/10.3390/ijms18112251 DOI: https://doi.org/10.3390/ijms18112251

Chen, L., Xu, H., Yin, B., Xiao, C., Hu, T., Wu. Y., 2004. Synthesis and Antifeeding Activities of Tonghaosu Analogues. Journal of Agricultural and Food Chemistry, 52 (22), 6719-6723, https://doi.org/10.1021/jf049479v DOI: https://doi.org/10.1021/jf049479v

Cheung, N., Tian, L., Liu, X., & Li, X.,2020. The Destructive Fungal Pathogen Botrytis cinerea-Insights from Genes Studied with Mutant Analysis. Pathogens, 9(11), 923. https://doi.org/10.3390/pathogens9110923 DOI: https://doi.org/10.3390/pathogens9110923

Corwin, J. A. Subedy, A., Eshbaugh, R., Kliebenstein, D. J. 2016. Expansive Phenotypic Landscape of Botrytis cinerea Shows Differential Contribution of Genetic Diversity and Plasticity, Molecular Plant-Microbe Interactions, 287-298, 29,4, https://doi.org/10.1094/MPMI-09-15-0196-R DOI: https://doi.org/10.1094/MPMI-09-15-0196-R

Crockett, S., Poller, B., Tabanca, N., Pferschy-Wenzig, E., Kunert, O., Wedge, D., Bucar, F., 2011. Bioactive xanthones from the roots of Hypericum perforatum (common St John's wort). Journal of the Science of Food and Agriculture, 91 (3), 428-434. https://doi.org/10.1002/jsfa.4202 DOI: https://doi.org/10.1002/jsfa.4202

De Miccolis Angelini, R.M., Rotolo, C., Masiello, M., Gerin, D., Pollastro, S. and Faretra, F. 2014. Occurrence of fungicide resistance in populations of Botryotinia fuckeliana (Botrytis cinerea) on table grape and strawberry in southern Italy. Pest Management Science, 70, 1785-1796. https://doi.org/10.1002/ps.3711 DOI: https://doi.org/10.1002/ps.3711

Fornari, T., Vicente, G., Vázquez, E., García-Risco, M.R., Reglero, G., 2012. Isolation of essential oil from different plants and herbs by supercritical fluid extraction. Journal of chromatography. A, 1250, 34–48. https://doi.org/10.1016/j.chroma.2012.04.051 DOI: https://doi.org/10.1016/j.chroma.2012.04.051

Hahn, M., 2014. The rising threat of fungicide resistance in plant pathogenic fungi: Botrytis as a case study. Journal of chemical biology, 7(4), 133-141. https://doi.org/10.1007/s12154-014-0113-1 DOI: https://doi.org/10.1007/s12154-014-0113-1

Isenegger, D.A., Macleod, W.J., Ford, R., Taylor, P.W.J., 2008. Genotypic diversity and migration of clonal lineages of Botrytis cinerea from chickpea fields of Bangladesh inferred by microsatellite markers. Plant Pathology, 57, 967–973. https://doi.org/10.1111/j.1365-3059.2008.01885.x DOI: https://doi.org/10.1111/j.1365-3059.2008.01885.x

Kovačec, E., Likar, M., Regvar, M., 2016.Temporal changes in fungal communities from buckwheat seeds and their effects on seed germination and seedling secondary metabolism. Fungal Biology, 120 (5), 666-678. https://doi.org/10.1016/j.funbio.2016.03.003. DOI: https://doi.org/10.1016/j.funbio.2016.03.003

Kumari, S., Tayal, P., Sharma, E., Kapoor, R., 2014. Analyses of genetic and pathogenic variability among Botrytis cinerea isolates. Microbiological Research,169(11), 862-872. https://doi.org/10.1016/j.micres.2014.02.012 DOI: https://doi.org/10.1016/j.micres.2014.02.012

Kuzmanovska, B., Rusevski, R., Jankuloski, L., Jankulovska, M., Ivic, D., Bandzo, K., 2012. Phe-notypic and genetic characterization of Botrytis cinerea isolates from tomato. Genetika, 44(3), 633–647. http://dx.doi.org/10.2298/GENSR1203663K DOI: https://doi.org/10.2298/GENSR1203663K

Lucca, A.J.D., Pauli, A., Schilcher, H., Sien, T., Bhatnagar, D., Walsh, T.J., 2011. Fungicid

al and bactericidal properties of bisabolol anddragosantol.J. Essential Oil Research, 23, 47–54. https://doi.org/10.1080/10412905.2011.9700457 DOI: https://doi.org/10.1080/10412905.2011.9700457

Martinez, F., Blancard, D., Lecomte, P. et al., 2003. Phenotypic Differences Between vacuma and transposa subpopulations of Botrytis cinerea. European Journal of Plant Pathology, 109, 479–488. https://doi.org/10.1023/A:1024222206991 DOI: https://doi.org/10.1023/A:1024222206991

Martinez, F., Coriocostet, M.F., Levis, C., Coarer, M., Fermaud, M., 2008. New PCR primers applied to characterize distribution of Botrytis cinerea population in French vineyards. Vitis, 47(4), 217–226. DOI: https://doi.org/10.5073/vitis.2008.47.217-226

Ons, L., Bylemans, D., Thevissen, K., Cammue, B.P.A., 2020. Combining Biocontrol Agents with Chemical Fungicides for Integrated Plant Fungal Disease Control. Microorganisms, 4;8(12):1930. https://doi.org/10.3390/microorganisms8121930 DOI: https://doi.org/10.3390/microorganisms8121930

Plesken, C., Pattar, P., Reiss, B., Noor, Z. N., Zhang L., Klug, K., Huettel, B., Hahn, M., 2021. Genetic Diversity of Botrytis cinerea Revealed by Multilocus Sequencing, and Identification of B. cinerea Populations Showing Genetic Isolation and Distinct Host Adaptation. Frontiers in Plant Science, 12, https://www.frontiersin.org/articles/10.3389/fpls.2021.663027 DOI: https://doi.org/10.3389/fpls.2021.663027

Rupp, S., Weber, R.W., Riege,r D., Detzel, P., Hahn, M. 2017. Spread of Botrytis cinerea Strains with Multiple Fungicide Resistance in German Horticulture. Frontiers in Microbiology, 3 (7), 2075. https://doi.org/10.3389%2Ffmicb.2016.02075 DOI: https://doi.org/10.3389/fmicb.2016.02075

Saito, S., Xiao C.L., 2018. Fungicide Resistance in Botrytis cinerea Populations in California and its Influence on Control of Gray Mold on Stored Mandarin Fruit. Plant Disease, 102(12), 2545-2549. https://doi.org/10.1094/PDIS-05-18-0766-RE DOI: https://doi.org/10.1094/PDIS-05-18-0766-RE

Schneider, C., Rasband, W., Eliceiri, K., 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671–675. https://doi.org/10.1038/nmeth.2089 DOI: https://doi.org/10.1038/nmeth.2089

Schoss, K., Kočevar Glavač, N., Dolenc Koce, J., Anžlovar, S., 2022. Supercritical CO2 Plant Extracts Show Antifungal Activities against Crop-Borne Fungi. Molecules, 27, 1132. https://doi.org/10.3390/molecules27031132 DOI: https://doi.org/10.3390/molecules27031132

Šernaitė, L., Rasiukevičiūtė, N., Valiuškaitė, A., 2020. Application of Plant Extracts to Control Postharvest Gray Mold and Susceptibility of Apple Fruits to B. cinerea from Different Plant Hosts. Foods, 9(10), 1430. https://doi.org/10.3390/foods9101430 DOI: https://doi.org/10.3390/foods9101430

Simonetti, G., Tocci, N., Valletta, A., Brasili, E., Diodata, F., Idoux, A., Pasqua, G., 2016. In vitro antifungal activity of extracts obtained from Hypericum perforatum adventitious roots cultured in a mist bioreactor against planktonic cells and biofilm of Malassezia furfur. Natural Product Research, 30 (5), 544-550. DOI: 10.1080/14786419.2015.1028059 DOI: https://doi.org/10.1080/14786419.2015.1028059

Tocci, N., Gaid, M., Kaftan, F., Belkheir, A., Belhadj, I., Liu, B., Ansch, R., Pasqua, G., Beerhues, L., 2018. Exodermis and endodermis are the sites of xanthone biosynthesis in Hypericum perforatum roots. New Phytologist, 217, 1099-1112. https://doi.org/10.1111/nph.14929 DOI: https://doi.org/10.1111/nph.14929

Weber, R.W.S., 2011. Resistance of Botrytis cinerea to Multiple Fungicides in Northern German Small-Fruit Production. The American Phytopathological Society, 95(10), 1263-1269. https://doi.org/10.1094/PDIS-03-11-0209 DOI: https://doi.org/10.1094/PDIS-03-11-0209

Williamson, B., Tudzynski, B., Tudzynski, P., van Kan, J.A. 2007. Botrytis cinerea: the cause of grey mould disease. Molecular Plant Pathology,8(5), 561-80. https://doi.org/10.1111/j.1364-3703.2007.00417.x DOI: https://doi.org/10.1111/j.1364-3703.2007.00417.x

Zhao, H., Kim, Y.K., Huang, L., Xiao, C.L., 2010. Resistance to thiabendazole and baseline sensitivity to fludioxonil and pyrimethanil in Botrytis cinerea populations from apple and pear in Washington State, Postharvest Biology and Technology,56 (1), 12-18, https://doi.org/10.1016/j.postharvbio.2009.11.013. DOI: https://doi.org/10.1016/j.postharvbio.2009.11.013

Zubrická, D., Mišianiková, A., Henzelyová, J., Valletta, A., De Angelis, G., Simonetti, G., Pasqua, G., Ellárová, C.,2015. Xanthones from roots, hairy roots and cell suspension cultures of selected Hypericum species and their antifungal activity against Candida albicans. Plant Cell Reports, 34, http://link.springer.com/10.1007/s00299-015-1842-5 DOI: https://doi.org/10.1007/s00299-015-1842-5




How to Cite

Anžlovar, S., & Dolenc-Koce, J. (2023). Different susceptibility of two Botrytis cinerea strains to supercritical CO2 plant extracts. Acta Biologica Slovenica, 66(1), 34–41. https://doi.org/10.14720/abs.66.1.14400



Original Research Paper

Funding data