Vpliv simptomatske bakterijske okužbe na izražanje genov, povezanih z imunostjo v hemocitih kopenskega raka Porcellio scaber


  • Andraž Dolar University of Ljubljana, Biotechnical Faculty, Dept. of Biology
  • Jernej Ogorevc University of Ljubljana, Biotechnical Faculty, Dept. of Animal Science
  • Anita Jemec Kokalj University of Ljubljana, Biotechnical Faculty, Dept. of Biology






Terrestrial isopods Porcellio scaber are exposed to many pathogens and parasites in their natural environment, which can cause tissue damage in the host and affect the immunocompetence and fitness of the organism. Bacterial infection leads to activation of innate immunity mechanisms, such as phagocytosis, formation of reactive oxygen and nitrogen species, activity of antioxidant enzymes, nodule formation, and the process of melanization. Molecular patterns of pathogens or microbes and pathogenesis-induced injury in the host trigger the transcription of genes in haemolymph cells, i.e., haemocytes, which have an important function as mediators of the immune response. In the current study, we examined changes in gene expression during symptomatic bacterial infection with Rhabochlamydia porcellionis and compared them with asymptomatic or healthy P. scaber. We isolated total RNA from the haemolymph (haemocytes) of asymptomatic and symptomatic animals, transcribed it into cDNA, and determined the relative expression of selected immune-related genes (Toll4, Dscam, MyD88, Ppae2a, Cat, MnSod, CypG, A2m, Atg5, and Nos). We found characteristic changes in the expression of selected genes confirming their role in the immune response of P. scaber in case of bacterial infection, and, in addition, biochemical methods showed increased activity of the enzyme alpha-2-macroglobulin and a borderline characteristic increase in the enzyme catalase. Based on the results, we can conclude that the studied genes represent molecular markers of immune response that can be used in various environmental studies.


Amparyup, P., Charoensapsri, W., Tassanakajon, A., 2013. Prophenoloxidase system and its role in shrimp immune responses against major pathogens. Fish & Shellfish Immunology, 34 (4), 990-1001. https://doi.org/10.1016/j.fsi.2012.08.019 DOI: https://doi.org/10.1016/j.fsi.2012.08.019

Becking, T., Giraud, I., Raimond, M., Moumen, B., Chandler, C., Cordaux, R., Gilbert, C., 2017. Diversity and evolution of sex determination systems in terrestrial isopods. Scientific Reports, 7 (1), 1084. https://doi.org/10.1038/s41598-017-01195-4 DOI: https://doi.org/10.1038/s41598-017-01195-4

Cerenius, L., Söderhäll, K., 2021. Immune properties of invertebrate phenoloxidases. Developmental & Comparative Immunology, 122, 104098. https://doi.org/10.1016/j.dci.2021.104098 DOI: https://doi.org/10.1016/j.dci.2021.104098

Charoensapsri, W., Amparyup, P., Hirono, I., Aoki, T., Tassanakajon, A., 2011. PmPPAE2, a new class of crustacean prophenoloxidase (proPO)-activating enzyme and its role in PO activation. Developmental & Comparative Immunology, 35 (1), 115-124. https://doi.org/10.1016/j.dci.2010.09.002 DOI: https://doi.org/10.1016/j.dci.2010.09.002

Chevalier, F., Herbiniére-Gaboreau, J., Bertaux, J., Raimond, M., Morel, F., Bouchon, D., Grève, P., Braquart-Varnier, C., 2011. The immune cellular effectors of terrestrial isopod Armadillidium vulgare: meeting with their invaders, Wolbachia. PLoS One, 6 (4), e18531. https://doi.org/10.1371/journal.pone.0018531 DOI: https://doi.org/10.1371/journal.pone.0018531

Chevalier, F., Herbinière-Gaboreau, J., Charif, D., Mitta, G., Gavory, F., Wincker, P., Grève, P., Braquart-Varnier, C., Bouchon, D., 2012. Feminizing Wolbachia: a transcriptomics approach with insights on the immune response genes in Armadillidium vulgare. BMC microbiology, 12, 1-18. https://doi.org/10.1186/1471-2180-12-S1-S1 DOI: https://doi.org/10.1186/1471-2180-12-S1-S1

Clark, K.F., Greenwood, S.J., 2016. Next-generation sequencing and the crustacean immune system: the need for alternatives in immune gene annotation. Integrative and comparative biology, 56 (6), 1113-1130. https://doi.org/10.1093/icb/icw023 DOI: https://doi.org/10.1093/icb/icw023

Cole, A., Morris, J., 1980. A new iridovirus of two species of terrestrial isopods, Armadillidium vulgare and Porcellio scaber. Intervirology, 14 (1), 21-30. https://doi.org/10.1159/000149158 DOI: https://doi.org/10.1159/000149158

Dolar, A., Drobne, D., Dolenec, M., Marinšek, M., Jemec Kokalj, A., 2022b. Time-dependent immune response in Porcellio scaber following exposure to microplastics and natural particles. Science of The Total Environment, 818, 151816. https://doi.org/10.1016/j.scitotenv.2021.151816 DOI: https://doi.org/10.1016/j.scitotenv.2021.151816

Dolar, A., Drobne, D., Narat, M., Jemec Kokalj, A., 2022c. Tire microplastics exposure in soil induces changes in expression profile of immune-related genes in terrestrial crustacean Porcellio scaber. Environmental Pollution, 314, 120233. https://doi.org/10.1016/j.envpol.2022.120233 DOI: https://doi.org/10.1016/j.envpol.2022.120233

Dolar, A., Jemec Kokalj, A., Drobne, D., 2022a. Time-course of the innate immune response of the terrestrial crustacean Porcellio scaber after injection of a single dose of lipopolysaccharide. Frontiers in Immunology, 13, 867077. https://doi.org/10.3389/fimmu.2022.867077 DOI: https://doi.org/10.3389/fimmu.2022.867077

Dolar, A., Mayall, C., Drobne, D., Kokalj, A. J., 2020. Modulations of immune parameters caused by bacterial and viral infections in the terrestrial crustacean Porcellio scaber: Implications for potential markers in environmental research. Developmental & Comparative Immunology, 113, 103789. https://doi.org/10.1016/j.dci.2020.103789 DOI: https://doi.org/10.1016/j.dci.2020.103789

Dolar, A., Močivnik, L., Manzano, M.A., Hrga, N., Zakšek, V., Jemec Kokalj, A., Drobne, D., Kostanjšek, R. 2022d. RNA-Seq data of common woodlice Porcellio scaber. Zenodo. https://doi.org/10.5281/zenodo.6673325

Dolar, A., Selonen, S., van Gestel, C. A., Perc, V., Drobne, D., Jemec Kokalj, A., 2021. Microplastics, chlorpyrifos and their mixtures modulate immune processes in the terrestrial crustacean Porcellio scaber. Science of the Total Environment, 772, 144900. https://doi.org/10.1016/j.scitotenv.2020.144900 DOI: https://doi.org/10.1016/j.scitotenv.2020.144900

Esteve, M., Herrera, F.C., 2000. Hepatopancreatic alterations in Litopenaeus vannamei (Boone, 1939) (Crustacea: Decapoda: Penaeidae) experimentally infected with a Vibrio alginolyticus strain. Journal of invertebrate pathology, 76 (1), 1-5. https://doi.org/10.1006/jipa.2000.4951 DOI: https://doi.org/10.1006/jipa.2000.4951

Gao, Q., Tang, Q., Xia, Z., Yi, S., Cai, M., Du, H., Yang, J., Li, J., Xing, Q., Luo, J., Yang, G., 2021. Molecular identification and functional analysis of MyD88 in giant freshwater prawn (Macrobrachium rosenbergii) and expression changes in response to bacterial challenge. International Journal of Biological Macromolecules, 178, 492-503. https://doi.org/10.1016/j.ijbiomac.2021.02.177 DOI: https://doi.org/10.1016/j.ijbiomac.2021.02.177

Gopalakrishnan, S., Chen, F.Y., Thilagam, H., Qiao, K., Xu, W.F., Wang, K. J., 2011. Modulation and interaction of immune-associated parameters with antioxidant in the immunocytes of crab Scylla paramamosain challenged with lipopolysaccharides. Evidence-Based Complementary and Alternative Medicine, 2011, 824962. https://doi.org/10.1155/2011/824962 DOI: https://doi.org/10.1155/2011/824962

Habib, Y.J., Zhang, Z., 2020. The involvement of crustaceans toll-like receptors in pathogen recognition. Fish & shellfish immunology, 102, 169-176. https://doi.org/10.1016/j.fsi.2020.04.035 DOI: https://doi.org/10.1016/j.fsi.2020.04.035

Halter, T., Köstlbacher, S., Collingro, A., Sixt, B.S., Tönshoff, E.R., Hendrickx, F., Kostanjšek, R., Horn, M., 2022. Ecology and evolution of chlamydial symbionts of arthropods. ISME Communications, 2 (1), 45. https://doi.org/10.1038/s43705-022-00124-5 DOI: https://doi.org/10.1038/s43705-022-00124-5

Herbinière, J., Braquart-Varnier, C., Grève, P., Strub, J. M., Frère, J., Van Dorsselaer, A., Martin, G., 2005. Armadillidin: a novel glycine-rich antibacterial peptide directed against gram-positive bacteria in the woodlouse Armadillidium vulgare (Terrestrial Isopod, Crustacean). Developmental & Comparative Immunology, 29 (6), 489-499. https://doi.org/10.1016/j.dci.2004.11.001 DOI: https://doi.org/10.1016/j.dci.2004.11.001

Herbinière, J., Grève, P., Strub, J. M., Thiersé, D., Raimond, M., van Dorsselaer, A., Martin, G., Braquart-Varnier, C., 2008. Protein profiling of hemocytes from the terrestrial crustacean Armadillidium vulgare. Developmental & Comparative Immunology, 32 (8), 875-882. https://doi.org/10.1016/j.dci.2008.01.007 DOI: https://doi.org/10.1016/j.dci.2008.01.007

Hornung, E., 2011. Evolutionary adaptation of oniscidean isopods to terrestrial life: structure, physiology and behavior. Terrestrial Arthropod Reviews, 4, 2, 95-130. DOI: https://doi.org/10.1163/187498311X576262

Hornung, E., Farkas., S., Fischer., E., 1998. Tests on the isopod Porcellio scaber. In: Løkke H., van Gestel C.A.M. (eds.) Handbook of soil invertebrate toxicity tests, John Wiley & Sons Ltd, Chichester, 207-22.

Jemec Kokalj, A., Dolar, A., Drobne, D., Škrlep, L., Škapin, A.S., Marolt, G., Nagode, A., van Gestel C.A., 2022. Effects of microplastics from disposable medical masks on terrestrial invertebrates. Journal of hazardous materials, 438, 129440. https://doi.org/10.1016/j.jhazmat.2022.129440 DOI: https://doi.org/10.1016/j.jhazmat.2022.129440

Jemec Kokalj, A., Dolar, A., Titova, J., Visnapuu, M., Škrlep, L., Drobne, D., Vija, H., Kisand, V., Heinlaan, M., 2021. Long term exposure to virgin and recycled LDPE microplastics induced minor effects in the freshwater and terrestrial Crustaceans Daphnia magna and Porcellio scaber. Polymers, 13 (5), 771. https://doi.org/10.3390/polym13050771 DOI: https://doi.org/10.3390/polym13050771

Jiravanichpaisal, P., Lee, B.L., Söderhäll, K., 2006. Cell-mediated immunity in arthropods: hematopoiesis, coagulation, melanization and opsonization. Immunobiology, 211 (4), 213-236. https://doi.org/10.1016/j.imbio.2005.10.015 DOI: https://doi.org/10.1016/j.imbio.2005.10.015

Kostanjšek, R., Marolt, T.P., 2015. Pathogenesis, tissue distribution and host response to Rhabdochlamydia porcellionis infection in rough woodlouse Porcellio scaber. Journal of invertebrate pathology, 125, 56-67. https://doi.org/10.1016/j.jip.2015.01.001 DOI: https://doi.org/10.1016/j.jip.2015.01.001

Kostanjšek, R., Štrus, J., Drobne, D., Avguštin, G., 2004. ‘Candidatus Rhabdochlamydia porcellionis’, an intracellular bacterium from the hepatopancreas of the terrestrial isopod Porcellio scaber (Crustacea: Isopoda). International journal of systematic and evolutionary microbiology, 54 (2), 543-549. https://doi.org/10.1099/ijs.0.02802-0 DOI: https://doi.org/10.1099/ijs.0.02802-0

Li, D., Wan, Z., Li, X., Duan, M., Yang, L., Ruan, Z., Wang, Q., Li, W., 2019. Alternatively spliced down syndrome cell adhesion molecule (Dscam) controls innate immunity in crab. Journal of Biological Chemistry, 294 (44), 16440-16450. https://doi.org/10.1074/jbc.RA119.010247 DOI: https://doi.org/10.1074/jbc.RA119.010247

Liu, Q. N., Tang, Y.Y., Zhang, S.P., Li, Y.T., Wang, G., Zhang, D.Z., Jiang, S-H., Yang, H., Tang, B-P., Dai, L.S., 2022. Characterization and expression analysis of differentially expressed genes in the red swamp crayfish Procambarus clarkii in response to Vibrio cholerae challenge. Aquaculture, 547, 737435. https://doi.org/10.1016/j.aquaculture.2021.737435 DOI: https://doi.org/10.1016/j.aquaculture.2021.737435

Liu, Y.T., Chang, C.I., Hseu, J.R., Liu, K.F., Tsai, J.M., 2013. Immune responses of prophenoloxidase and cytosolic manganese superoxide dismutase in the freshwater crayfish Cherax quadricarinatus against a virus and bacterium. Molecular Immunology, 56 (1-2), 72-80. https://doi.org/10.1016/j.molimm.2013.03.023 DOI: https://doi.org/10.1016/j.molimm.2013.03.023

Lou, F., Wang, Y., Han, Z., Shui, B., 2022. Comparative transcriptome reveals the molecular regulation mechanism of Charybdis japonica to high-and low-temperature stresses. Frontiers in Marine Science, 9, 180. https://doi.org/10.3389/fmars.2022.849485 DOI: https://doi.org/10.3389/fmars.2022.849485

Mengal, K., Kor, G., Kozák, P., Niksirat, H., 2022. Effects of environmental factors on the cellular and molecular parameters of the immune system in decapods. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 276, 111332. https://doi.org/10.1016/j.cbpa.2022.111332 DOI: https://doi.org/10.1016/j.cbpa.2022.111332

Pan, L., Zhang, X., Yang, L., Pan, S., 2019. Effects of Vibro harveyi and Staphyloccocus aureus infection on hemocyanin synthesis and innate immune responses in white shrimp Litopenaeus vannamei. Fish & Shellfish Immunology, 93, 659-668. https://doi.org/10.1016/j.fsi.2019.08.016 DOI: https://doi.org/10.1016/j.fsi.2019.08.016

Pfaffl, M.W., 2001. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic acids research, 29 (9), e45-e45. https://doi.org/10.1093/nar/29.9.e45 DOI: https://doi.org/10.1093/nar/29.9.e45

Ponprateep, S., Vatanavicharn, T., Lo, C.F., Tassanakajon, A., Rimphanitchayakit, V., 2017. Alpha-2-macroglobulin is a modulator of prophenoloxidase system in pacific white shrimp Litopenaeus vannamai. Fish & shellfish immunology, 62, 68-74. https://doi.org/10.1016/j.fsi.2016.12.028 DOI: https://doi.org/10.1016/j.fsi.2016.12.028

Raman, T., Arumugam, M., Mullainadhan, P., 2008. Agglutinin-mediated phagocytosis-associated generation of superoxide anion and nitric oxide by the hemocytes of the giant freshwater prawn Macrobrachium rosenbergii. Fish & Shellfish Immunology, 24 (3), 337-345. https://doi.org/10.1016/j.fsi.2007.12.005 DOI: https://doi.org/10.1016/j.fsi.2007.12.005

Rodríguez-Ramos, T., Carpio, Y., Bolívar, J., Espinosa, G., Hernández-López, J., Gollas-Galván, T., Ramos, L., Pendón, C., Estrada, M.P., 2010. An inducible nitric oxide synthase (NOS) is expressed in hemocytes of the spiny lobster Panulirus argus: cloning, characterization and expression analysis. Fish & shellfish immunology, 29 (3), 469-479. https://doi.org/10.1016/j.fsi.2010.05.013 DOI: https://doi.org/10.1016/j.fsi.2010.05.013

Sánchez-Salgado, J.L., Pereyra, M.A., Agundis, C., Calzada-Ruiz, M., Kantun-Briceño, E., Zenteno, E., 2019. In vivo administration of LPS and β-glucan generates the expression of a serum lectin and its cellular receptor in Cherax quadricarinatus. Fish & Shellfish Immunology, 94, 10-16. https://doi.org/10.1016/j.fsi.2019.08.061 DOI: https://doi.org/10.1016/j.fsi.2019.08.061

Sánchez-Salgado, J.L., Pereyra, M.A., Alpuche-Osorno, J.J., Zenteno, E., 2021. Pattern recognition receptors in the crustacean immune response against bacterial infections. Aquaculture, 532, 735998. https://doi.org/10.1016/j.aquaculture.2020.735998 DOI: https://doi.org/10.1016/j.aquaculture.2020.735998

Söderhäll, I., 2016. Crustacean hematopoiesis. Developmental & Comparative Immunology, 58, 129-141. https://doi.org/10.1016/j.dci.2015.12.009 DOI: https://doi.org/10.1016/j.dci.2015.12.009

Sun, M., Li, S., Zhang, X., Xiang, J., Li, F., 2020. Isolation and transcriptome analysis of three subpopulations of shrimp hemocytes reveals the underlying mechanism of their immune functions. Developmental & Comparative Immunology, 108, 103689. https://doi.org/10.1016/j.dci.2020.103689 DOI: https://doi.org/10.1016/j.dci.2020.103689

Sun, Y., Zhang, X., Wang, Y., Zhang, Z., 2022. Long-read RNA sequencing of Pacific abalone Haliotis discus hannai reveals innate immune system responses to environmental stress. Fish & Shellfish Immunology, 122, 131-145. https://doi.org/10.1016/j.fsi.2022.01.042 DOI: https://doi.org/10.1016/j.fsi.2022.01.042

Takaki, Y., Muta, T., Iwanaga, S., 1997. A peptidyl-prolyl cis/trans-isomerase (cyclophilin G) in regulated secretory granules. Journal of Biological Chemistry, 272 (45), 28615-28621. https://doi.org/10.1074/jbc.272.45.28615 DOI: https://doi.org/10.1074/jbc.272.45.28615

Tassanakajon, A., Rimphanitchayakit, V., Visetnan, S., Amparyup, P., Somboonwiwat, K., Charoensapsri, W., Tang, S., 2018. Shrimp humoral responses against pathogens: antimicrobial peptides and melanization. Developmental & Comparative Immunology, 80, 81-93. https://doi.org/10.1016/j.dci.2017.05.009 DOI: https://doi.org/10.1016/j.dci.2017.05.009

Tassanakajon, A., Somboonwiwat, K., Supungul, P., Tang, S., 2013. Discovery of immune molecules and their crucial functions in shrimp immunity. Fish & shellfish immunology, 34 (4), 954-967. https://doi.org/10.1016/j.fsi.2012.09.021 DOI: https://doi.org/10.1016/j.fsi.2012.09.021

Tran, N. T., Kong, T., Zhang, M., Li, S., 2020. Pattern recognition receptors and their roles on the innate immune system of mud crab (Scylla paramamosain). Developmental & Comparative Immunology, 102, 103469. https://doi.org/10.1016/j.dci.2019.103469 DOI: https://doi.org/10.1016/j.dci.2019.103469

Van Gestel, C.A., Loureiro, S., 2018. Terrestrial isopods as model organisms in soil ecotoxicology: a review. ZooKeys, 801, 127. https://doi.org/10.3897/zookeys.801.21970 DOI: https://doi.org/10.3897/zookeys.801.21970

Wang, W., 2011. Bacterial diseases of crabs: a review. Journal of invertebrate pathology, 106 (1), 18-26. https://doi.org/10.1016/j.jip.2010.09.018 DOI: https://doi.org/10.1016/j.jip.2010.09.018

Wang, X.W., Wang, J.X., 2013. Pattern recognition receptors acting in innate immune system of shrimp against pathogen infections. Fish & shellfish immunology, 34 (4), 981-989. https://doi.org/10.1016/j.fsi.2012.08.008 DOI: https://doi.org/10.1016/j.fsi.2012.08.008






Original Research Paper

How to Cite

Dolar, A., Ogorevc, J., & Jemec Kokalj, A. (2023). Vpliv simptomatske bakterijske okužbe na izražanje genov, povezanih z imunostjo v hemocitih kopenskega raka Porcellio scaber. Acta Biologica Slovenica, 66(2). https://doi.org/10.14720/abs.66.2.14428

Funding data

Similar Articles

1-10 of 90

You may also start an advanced similarity search for this article.