First report of cyanobacterial bloom of Microcystis viridis (A. Braun) Lemmermann in Slovenia


  • Tina Eleršek



cyanobacteria, cyanobacterial bloom, Microcystis viridis, microcystin, cyclic peptides


The presence of the cyanobacterial bloom of Microcystis viridis (A. Braun) Lemmermann is reported for the first time in Slovenia. After field sampling, and detailed microscopic observations, species analysis, chlorophyll content analysis, and cyanobacterial cyclic
peptides were determined, the latter by high performance liquid chromatography (HPLC). Cells were found in colonies with limited amounts of more or less refractive mucilage. The average diameter of a cell was 4–7 µm. Three microcystins, two anabaenopeptins and planktopeptin BL 1125, were identified. The content of cyclic peptides in the bloom was in the range of 2.3–6.6 mg g–1 of cellular dry weight. M. viridis was dominant in the cyanobacterial bloom, other species being Micorcystis wesenbergii, Microcystis aeruginosa, Anabaena flos-aque, Anabaena spiralis, Aulacoseira granulata, Closterium sp., Euglena sp., Pediastrum duplex, Scenedesmus quadricauda, Staurastrum gracile, Trachelomonas volvocina, Trachelomonas hispida and Tetraedron limneticum. In keeping with previous studies the content of cyclic peptides in the cyanobacterial bloom was high enough to cause bloom lysis. This fact was also confirmed by field observation; not only bloom composition change, but after 8 days there was no visible cyanobacterial bloom on the Boreci reservoir surface, although no heavy rain or wind was observed during this period. The discovery of M. viridis bloom in Slovenia is very important, since toxic bloom constitutes a threat all over the World.


Carmichael W.W. 1992: Cyanobacteria secondary metabolites – the cyanotoxins. Journal of Applied Bacteriology 72: 445–459. DOI:

Carmichael W.W. 1994: The toxins of cyanobacteria, Scientific American, 270: 78–86. DOI:

Cronberg G., H. Annadotter & L.A. Lawton 1999: The occurrence of toxic blue-green alge in Lake Ringesjön, southern Sweden, despite nutrient reduction and fish biomanipulation. Hydrobiologia 404 (0): 123–129. DOI:

Falconer I.R. 1994: Toxicity of the blue-green algae (cyanobacterium) Microcystis aeruginosa in drinking water to growing pigs, as an animal model for human injury and risk assesment. Environmental Toxicology and Water Quality 9: 131–139. DOI:

Falconer I.R. 1999: An overview of problems caused by toxic blue-green algae (cyanobacteria) in drinking and recreational water. Environmental Toxicology 14, 1: 5–12. DOI:<5::AID-TOX3>3.0.CO;2-0

Figueredo C.C. & A. Giani 2001: Seasonal variation in the diversity and species richness of phytoplankton in a tropical eutrophic reservoir. Hydrobiologia 445 (1–3): 165–174. DOI:

Grach-Pogrebinsky O., B. Sedmak & S. Carmeli 2003: Protease inhibitors from a Slovenian Lake Bled toxic waterbloom of the cyanobacterium Planktothrix rubescens. Tetrahedron 59: 8329–8336. DOI:

Guidelines for safe recreational water environments, Volume 1, World Health Organization (WHO), 2003. Harada K.I., K. Matsuura, M. Suzuki, H. Oka, M.F. Watanabe, S. Oishi, A. Dahlem,V.R. Beasely & W.W. Carmichael 1988: Chemical analyses of toxic peptides produced by cyanobacteria. Journal of Chromatography 448: 275–283. DOI:

Hindak F., P. Marvan, J. Komarek, K. Rosa, J. Popovsky & O. Lhotsky 1978: Sladkovodne riasy. Slovenske pedagogicke nakladatelstvo, Bratislava, 724 pp.

Ishitsuka M.O., T. Kusumi & H. Kakisawa 1990: Microviridin: a novel tricyclic depsipeptide from toxic cyanobacteruim Microcystis viridis. Journal of American chemical society 112: 8180–8182. DOI:

Kameyama K., N. Sugiura, Y. Inamori & T. Maekawa 2004: Characteristics of microcystin production in the cell cycle of Microcystis viridis. Environmental toxicology 19 (1): 20–25. DOI:

Kameyama K., N. Sugiura, H. Isoda, Y. Inamori & T. Maekawa 2002: Effect of nitrate and phosphate concentration on production of microcystins by Microcystis viridis NIES-102. Aquatic ecosystem health & management 5 (4): 443–449. DOI:

Kaya K. & M.M. Watanabe 1990: Microcystin composition of an axenic clonal strain M. viridis and M. viridis – containing waterbloom in Japanese freshwaters. Journal of Applied Phycology 2 (2): 37–43. DOI:

Kodani S.,K. Ishida & M. Murakami 1998: Aeruginosin 103-A, a thrombin inhibitor from cyanobacterium Microcystis viridis. Journal of Natural Products 61: 1046–1048. DOI:

Komarek J. 1991: A review of water-bloom forming Mycrocystis species with regard to population from Japan. Algological studies 64: 115–127.

Komarek J. & K. Anagnostidis K 1999–2000: Cyanoprokaryota (19). In: Ettl H., Gärtner G., Heynig H., Mollenhauer D. (Eds.). Süsswasserflora von Mitteleuropa. Spektrum Akademischer Verlag GmbH, Heidelberg, Berlin.

Kondo R., T. Yoshida, Y. Yuki & S. Hiroishi 2000: DNA-DNA reassociation among a bloom-forming cyanobacterial genus, Microcystis. International journal of systematic and evolutionary microbiology 50: 767–770. DOI:

Kusumi T., T. Ooi, M.M. Watanabe & H. Takahashi 1987: Cyanoviridin RR, a toxin from the cyanobacterium (blue-green alga) Microcystis viridis. Tetrahedron letters. DOI:

Lepre C., A. Wilmotte & B. Meyer 2000: Molecular divertisity of Microcystis strains (Cyanophyceae, Chroococcales). Systematic and geography of plants 70: 275–283. DOI:

Matsuda H., T. Okino, M. Murakami & K. Yamaguchi 1996: Aeruginosin 102-A and B, new thrombin inhibitors from the cyanobacterium Microcystis viridis (NIES-102). Tetrahedron 52 (46): 14501–14506. DOI:

Murakami M., S. Kodani, K. Ishida, H. Matsuda & K. Yamaguchi 1997: Micropeptin 103, a chymotrypsin inhibitor from cyanobacterium Microcystis viridis (NIES-103). Tetrahedron letters 38 DOI:

(17): 3035–3038.

Ooi T., T. Kusumi, H. Kakisawa & M.M. Watanabe 1989: Structure of cyanoviridin RR, a toxin from the blue-green alga Microcystis viridis. Journal of Applied Phycology 1 (1): 31–38. DOI:

Otsuka S., S. Suda, S. Shibata, H. Oyaizu, S. Matsumoto & M.M. Watanabe 2001: A proposal for the unification of five species of the cyanobacterial genus Microcystis Kützig ex Lemmermann 1907 under the Rules of the bacterial code. International Journal of Systematic and Evolutionary Microbiology 51: 873–879. DOI:

Pan H., L. Song,Y. Liu & T. Börner 2002: Detection of hepatotoxic Microcystis strains by PCR with intact cells from both culture and environmental samples. Archives of Microbiology 178: 421–427. DOI:

Sedmak B., S. Carmeli & T. Eleršek 2008: »Non-toxic« cyclic peptides induce lysis of cyanobacteria – an effective cell population density control mechanism in cyanobacterial blooms. Microbial Ecology 2 (56): 201–209. DOI:

Sedmak B. & T. Eleršek 2005: Microcystins induce morphological and physiological changes in selected representative phytoplanktons. Microbial Ecology 50: 298–305. DOI:

Sedmak B. & T. Eleršek 2006: Microcystins induce morphological and physiological changes in selected representative phytoplanktons. Microbial Ecology 51: 508–515. DOI:

Sedmak B. & G. Kosi 1997: Microcystins in Slovene freshwaters (Central Europe) – first report. Natural toxins 5: 64–73. DOI:<64::AID-NT3>3.0.CO;2-O

Sedmak B. & G. Kosi 1998: The role of microcystins in heavy cyanobacterial bloom formation. Journal of Plankton Research 20, 4: 691–708. DOI:

Sedmak B. & G. Kosi 1998: Erratum. The role of microcystins in heavy cyanobacterial bloom formation. Journal of Plankton Research 20, 4: 1421. DOI:

Sedmak B. & G. Kosi 2002: Harmful cyanobacterial blooms in Slovenia – Bloom types and microcystin producers. Acta Biologica Slovenica 45: 17–30.

Sedmak B., Kosi G. & B. Kolar 1994: Cyanobacteria and their relevance. Periodicum Biologorum 96, 4: 428–430.

Sedmak B. & D. Šuput 2002: Co-operative effects in tumorigenicity. The microcystin example. Radiology and Oncology 36, 2: 162–164.

Sivonen K., S.I. Niemelä, R.M. Niemi, L. Lepistö, T.H. Luoma & L.A. Räsänen 1990: Toxic cyanobacteria (blue-green algae) in Finnish fresh and coastal waters. Hydrobiologia 190 (3): 267–275. DOI:

Song L., T. Sano, R. Li, M.M. Watanabe, Y. Liu, & K. Kaya 1998: Microcystin production of Microcystis viridis (cyanobacteria) under different culture conditions. Phycological research 46 (2): 19–23. DOI:

Starmach K. 1966: Cyanophita-Sinice Glaucophyta-Glaukofity. Flora slodkowodna Polski, Tom 2, Warszawa, 807 pp.

Vollenweider R.A. 1969: Primary production in aquatic environments. Internal biology handbook 12. Oxford, Blackwell Scientific Publications: 225 pp.

Watanabe M.F., K.I. Harada, K. Matsuura, M. Watanabe, & M. Suzuki 1989: Heptapeptide toxin production during batch culture of two Microcystis species (Cyanobacrteria). Journal of Applied Phycology 1 (2): 161–165. DOI:

Watanabe M.F., S. Oishi, Y. Watanabe & M. Watanabe 1986: Strong probability of lethal toxicity in the blue-green alga Microcystis viridis Lemmermann. Journal of Phycology JPYLAJ 22 (4): 552–556. DOI:

Yamaguchi M., T. Ogawa, K. Muramoto, Y. Kamio, M. Jimbo & H. Kamiya 1999: Isolation and characterization of a mannan-binding lectin from freshwater cyanobacterium (blue-green algae) Microcystis viridis. Biochemical and biophysical research communications 265 (3): 703–708. DOI:

Yasuno M. & Y. Sugaya 1991: Toxicities of Microcystis viridis and the isolated hepatotoxic polypeptides of Cladocerans. Internationale vereinigung fuer theoretishe und engewandte limnologieverhandlungen IVTLAP 24 (4): 2622–2626. DOI:

Yasuno M., Y. Sugaya, K. Kaya & M.M. Watanabe 1998: Variations in the toxicity of Microcystis sopecies to Moina macrocopa. Phycological research, 46 suppl.: 31–36. DOI:

Žegura B., B. Sedmak & M. Filipič 2003: Microcystin-LR induces oxidative DNA damage in human hepatoma cell line HepG2. Toxicon 41: 41–48. DOI:






Original Research Paper

How to Cite

Eleršek, T. (2009). First report of cyanobacterial bloom of Microcystis viridis (A. Braun) Lemmermann in Slovenia. Acta Biologica Slovenica, 52(1), 37-47.

Similar Articles

1-10 of 21

You may also start an advanced similarity search for this article.