Geological CO2 affects microbial respiration rates in Stavešinci mofette soils
DOI:
https://doi.org/10.14720/abs.52.2.15372Keywords:
substrate-induced respiration, SIR, microbial respiration, microbial biomass, soil respiration, natural CO2 springs, mofetteAbstract
Substrate-induced respiration (SIR) was used to estimate microbial respiration and microbial biomass in soils from Stavešinci natural CO2 spring (mofette) exposed to different geological CO2 concentrations. SIR measurements clearly demonstrated higher microbial respiration and microbial biomass in control sites compared to high soil CO2 sites. Sampling in two different locations and in three different years also confirmed long-term stability of this pattern, which was found for both locations and in different sampling periods.
References
Anderson J. P. E. & Domsch K. H. 1978: A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biology & Biochemistry 10: 215–221. DOI: https://doi.org/10.1016/0038-0717(78)90099-8
Badiani A., Raschi A., Paolacci A. R., Miglietta F. 1999: Plant responses to elevated CO2: a prospective from natural CO2 springs. In: Agrawal S.B., Agrawal M. (eds.): Environmental pollution and plant responses. CRC Press LLC, Boca Raton, pp. 45–81. DOI: https://doi.org/10.1201/9780203756935-4
Bouma T. J., Bryla D. R. 2000: On the assessment of root and soil respiration for soils of different textures: interactions with soil moisture contents and soil CO2 concentrations. Plant & Soil 227: 215–221. DOI: https://doi.org/10.1023/A:1026502414977
Cheng W. 1999: Rhizosphere processes under elevated CO2. In: Luo Y., Mooney H.A. (eds.). Carbon dioxide and environmental stress. Academic Press, San Diego: pp. 245–264. DOI: https://doi.org/10.1016/B978-012460370-7/50010-3
Habekost M., Eisenhauer N., Scheu S., Steinbeiss S., Weigelt A., Gleixner G. 2008: Seasonal changes in the soil microbial community in a grassland plant diversity gradient four years after establishment. Soil Biology & Biochemistry 40: 2588–2595. DOI: https://doi.org/10.1016/j.soilbio.2008.06.019
Jenkinson D. S., Ladd J. N. 1981: Microbial biomass in soil: measurement and turnover. In: Paul E. A., Ladd J.N. (eds.). Soil Biochemistry, vol. 5. Marcel Dekker, New York and Basel, pp. 415–471.
Kaligarič M. 2001: Vegetation patterns and responses to elevated CO2 from natural CO2 springs at Strmec (Radenci, Slovenia). Acta Biologica Slovenica 44: 31–38.
Lin Q. & Brookes P. C. 1999: An evaluation of the substrate-induced respiration method. Soil Biology & Biochemistry 31: 1969–1983. DOI: https://doi.org/10.1016/S0038-0717(99)00120-0
Maček I. 2004: Root response of selected agriculturally important species to naturally elevated CO2 concentration. Doctoral Dissertation. Biotechnical Faculty, University of Ljubljana, Ljubljana.
Maček I., Pfanz H., Francetič V., Batič F., Vodnik D. 2005: Root respiration response to high CO2 concentrations in plants from natural CO2 springs. Environmental and Experimental Botany 54: 90–99. DOI: https://doi.org/10.1016/j.envexpbot.2004.06.003
Maček I., Dumbrell A.J., Helgason T., Nelson M., Fitter A. H., Vodnik D. 2008: Extreme abiotic environmental factors are determining arbuscular mycorrhizal fungal community structure at natural CO2 springs. In: COST Action 870 – From production to application of arbuscular mycorrhizal fungi in agricultural systems: a multidisciplinary approach: Working groups 2 and 4 meeting,
–19 September 2008. Aristotle University of Thessaloniki, Thessaloniki: pp. 71.
Pfanz H., Vodnik D., Wittmann C., Aschan G., Raschi A. 2004: Plants and geothermal CO2 exhalations. Survival and adaptation to a high CO2 environment. In: Esser K., Lüttge U., Kadereit J.W., Beyschlag W. (eds.). Progress in Botany 65. Springer-Verlag, Berlin Heidelberg, pp. 499–538. DOI: https://doi.org/10.1007/978-3-642-18819-0_20
Pfanz H., Vodnik D., Wittmann C., Aschan G., Batič F., Turk B., Maček I. 2007. Photosynthetic performance (CO2-compensation point, carboxylation efficiency, and net photosynthesis) of timothy grass (Phleum pratense L.) is affected by elevated carbon dioxide in post-volcanic mofette areas. Environmental and Experimental Botany 61: 41–48. DOI: https://doi.org/10.1016/j.envexpbot.2007.02.008
Pinheriro J. C., Bates D. M. 2000: Mixed-Effects models in S and S-PLUS, statistics and computing, Springer, New York, 528 pp. DOI: https://doi.org/10.1007/978-1-4419-0318-1
Raschi A., Miglietta F., Tognetti R., van Gardingen P.R. 1997: Plant responses to elevated CO2. Evidence from natural CO2 springs. Cambridge University Press, Cambridge. DOI: https://doi.org/10.1017/CBO9780511565236
R DevelopmentCore Team 2009: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.
Rillig M. C., Hernandez G. Y., Newton C. D. 2000: Arbuscular mycorrhizae respond to elevated atmospheric CO2 after long-term exposure: evidence from a CO2 spring in New Zealand supports the resource balance model. Ecology Letters 3: 475–478. DOI: https://doi.org/10.1046/j.1461-0248.2000.00178.x
Ross D. J., Tate K. R., Newton P. C. D., Wilde R. H., Clark H. 2000: Carbon and nitrogen pools and mineralization in a grassland gley soil under elevated carbon dioxide at a natural CO2 spring. Global Change Biology 6: 779–790. DOI: https://doi.org/10.1046/j.1365-2486.2000.00357.x
Ross D. J, Tate K. R., Newton P. C. D., Clark H. 2002: Decomposability of C3 and C4 grass litter sampled under different concentrations of atmospheric carbon dioxide at a natural CO2 spring. Plant and Soil 240: 275–286. DOI: https://doi.org/10.1023/A:1015779431271
Ross D. J., Tate K. R., Newton P. C. D., Clark H. 2003: Carbon mineralization in an organic soil, with and without added grass litter, from a high-CO2 environment at a carbon dioxide spring. Soil Biology & Biochemistry 35: 1705–1709. DOI: https://doi.org/10.1016/j.soilbio.2003.08.008
Videmšek U., Hagn A., Suhadolc M., Radl V., Knicker H., Schloter M., Vodnik D. 2009: Abundance and diversity of CO2-fixing bacteria in grassland soils close to natural carbon dioxide springs. Microbial Ecology 58: 1–9. DOI: https://doi.org/10.1007/s00248-008-9442-3
Vodnik D., Pfanz H., Maček I., Kastelec D., Lojen S., Batič F. 2002: Photosynthetic performance of cockspur (Echinochloa crus-galli (L.) Beauv.) at sites of naturally elevated CO2. Photosynthetica 40: 575–579. DOI: https://doi.org/10.1023/A:1024308204086
Vodnik D., Kastelec D., Pfanz H., Maček I., Turk B.. 2006: Small-scale spatial variation in soil CO2
concentration in a natural carbon dioxide spring and some related plant responses. Geoderma
: 309–319.
Vodnik D., Videmšek U., Pintar M., Maček I., Pfanz H. 2009. The characteristics of soil CO2 fluxes at a site with natural CO2 enrichment. Geoderma 150: 32–37. DOI: https://doi.org/10.1016/j.geoderma.2009.01.005
Zak D. R., Pregityer K. S., Curtis P. S., Teeri J. A., Fogel R., Randlett D. L. 1993: Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles. Plant and Soil 151: 105–117. DOI: https://doi.org/10.1007/BF00010791
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.