Response of an ozone indicator plant before and after installation of a desulphurization device at a thermal power plant

Authors

  • Nataša Kopušar
  • Zdenka Mazej
  • Franc Batič

DOI:

https://doi.org/10.14720/abs.53.1.15472

Keywords:

air pollution, desulphurization devices, Trifolium repens ‘Regal’, ozone, sulphur dioxide, plant pigments and antioxidants, ozone injuries, biomass

Abstract

The main goal of the research was to compare the plant response to air pollutants in the rural environment (Zavodnje village) before and after the installation of a desulphurisation device at unit 5 of the Šoštanj Thermal Power Plant (Slovenia). The installation of the cleaning device for SO2 in the year 2001 caused very significant reduction of annual average SO2 emission and immission, while concentrations of dust particles, O3, NOx, and CO2 in Zavodnje remained unchanged. On the other hand the average concentrations of ozone during seasonal experimental period increased after 2001, but there were no significant differences in AOT40. The impact of O3 in combination with other air pollutants was studied at Zavodnje in the period 1996–2003 using white clover (Trifolium repens ‘Regal’) on the basis of visible ozone injuries of leaves, biomass reduction and by analysis of chosen biochemical stress parameters in leaves – the content of plant pigments and antioxidants. The effects of reduction of SO2 after 2001 were observed in the biochemical responses of white clover plants, which showed better vitality. Despite of that, there was no significant difference in the level of plant injury by ozone between the period 1996–2000 and period 2001–2003. Biomass ratio CN-S/CN-R was also unaffected.

References

Alonso, R., Elvira, S., Castillo, F. J., Gimeno, B.S., 2001. Interaction effects of ozone and drought stress on pigments and activities of antioxidative enzymes in Pinus halepensis. Plant, Cell Envi- ron., 24, 905–916. DOI: https://doi.org/10.1046/j.0016-8025.2001.00738.x

Arora, A., Sairam, R.K., Srivastava, G.C., 2002. Oxidative stress and antioxidative system in plants. Curr. Sci.82, 1227–1238.

Barnes, J. D., Davison, A. W., Booth, T.A., 1998. Ozone accelerates structural degradation of epicu- ticular wax on Norway spruce needles. New Phytol., 110, 309–318. DOI: https://doi.org/10.1111/j.1469-8137.1988.tb00267.x

Beckerson, D. W, Hofstra, G., 1979. Stomatal responses of white bean to O3 and SO3 singly or in combination. Atmos. Environ., 13, 533–535. DOI: https://doi.org/10.1016/0004-6981(79)90147-1

Benton J., Fuhrer, J., Gimeno, B.S, Skirby, L, Palmer-Brown, D., Ball, G., Roadknight, C., Mills, G., 2000. An international cooperative programme indicates the widespread occurrence of ozone injury on crops. Agric. Ecosyst. Environ., 78, 19–30. 44 Acta Biologica Slovenica, 53 (1), 2010 DOI: https://doi.org/10.1016/S0167-8809(99)00107-3

Directive 2002/3/EC of the European Parliament and of the Council of 12 February 2002 relating to ozone in ambient air. Official Journal of the European Communities, L 67, pp. 14–30.

Flagler, R. B., Youngner, V.B., 1982. Ozone and sulphur dioxide effects on tall fescue: I. Growth and Yield Responses. J. Environ. Qual., 11, 386–389. DOI: https://doi.org/10.2134/jeq1982.00472425001100030013x

Foyer, C. H., Furbank, R. T., Harbinson, J., Horton, P., 1990. The mechanisms contributing to photosynthetic control of electron transport by carbon assimilation in leaves. Photosynth. Res., 25, 83–100. DOI: https://doi.org/10.1007/BF00035457

Foyer, C. H., Lopez-Delgado, h., Dat, J., Scott, I. M., 1997. Hydrogen peroxide and glutathioune-associated mechanisms of acclamatory atress tolerance and signalling. Physiol.Plant., 100, 241–254. DOI: https://doi.org/10.1111/j.1399-3054.1997.tb04780.x

Fuhrer, J., Achermann, B., 1999. Critical levels for ozone – level II. In: Fuhrer, J., Achermann, B. (eds.): Environmental Documentation, 115. Swiss Agency for the Environment, forests and Landscape, Bern. 333 pp.

Grantz, D.A., 2003. Ozone impacts on cotton: towards an integrated mechanism. Environ. Pollut., 126, 331–344. DOI: https://doi.org/10.1016/S0269-7491(03)00246-X

Guderian, R., 1985. Air Pollution by Photochemical Oxidants. Formation, Transport, Control, and Effects on Plants. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo.

Halliwell, B., Gutteridge, J. M. C., 2007. Free Radicals in Biology and Medicine, 4th edition, Oxford University Press, New York.

Harbinson, J., Hedley, C. L., 1993. Changes in P-700 oxidation during the early stages of the induction of photosynthesis. Plant. Physiol.103, 649–660. DOI: https://doi.org/10.1104/pp.103.2.649

Hayes, F., Mills, G, Harmens, H., Novak, K., Williams, P., 2006. ICP Vegetation experimental protocol for monitoring the incidences of ozone injury on vegetation. Natural Environment Research Council, pp. 1–28. web site. http://icpvegetation.ceh.ac.uk/.

Heagle, A. S., Miller, J. E., Chevone, B. I., Dreschel, T. W., Manning, W. J., McCool, P. M., Lynn, Morrison, C., Neely, G. E., Rebbeck, J., 1995. Response of a white clover indicator system to tropospheric ozone at eight locations in the United States. Water Air Soil Pollut., 85, 1373–1378. Heath R. L., Taylir G. E. Jr, 1997. Physiological processes and plant responses to ozone exposure. In: Sandermann, H., Wellburn, A. R., Heath, R. L. (eds.), Forest Decline and Ozone. Springer-Verlag, Berlin, pp. 317–368. DOI: https://doi.org/10.1007/BF00477173

Iriti, M., Faoro, F., 2008. Oxidative stress, the paradigm of ozone toxicity in plants and animals. Water Air Soil Pollut., 187, 285–301. DOI: https://doi.org/10.1007/s11270-007-9517-7

Jones, D.P., 2006. Redeining oxidative stress. Antioxid. Redox Signal.8, pp. 1865–1879. DOI: https://doi.org/10.1089/ars.2006.8.1865

Lee, E. H., Pausch, R. C., Rowland, R. A., Mulchi, C. L., Rudorff, B. F. T., 1997. Responses of field-grown soybean (cv. Essex) to elevated SO2 under two atmospheric CO2 concentrations. Environ. Exp. Bot., 37, 85–93. DOI: https://doi.org/10.1016/S0098-8472(96)01055-6

Lepper, P., 1992. Wirkungen luftgetragener Schadstoffe (SO2, NO2, O3) auf antioxidative Systeme, Fettsauremuster und Frostresistenz von Kulturplanzen. Wissenschafts-verlag Maraun, Frankfurt. 228 pp.

Luwe, M. W. F, Takkahama, U., Heber, U., 1993. Role of ascorbate in detoxifying ozone in the apoplast of spinach (Spinacia oleracea L.) leaves. Plant. Physiol., 101, 969–976. DOI: https://doi.org/10.1104/pp.101.3.969

Malhotra, S. S, Khan, A. A., 1985. Biochemical and physiological impact of major pollutants. In: Treshow, M. (Ed.), Air Pollution and Plant Life:, Wiley & Sons, New York, pp. 113–157. Mehlhorn, H., Seufert, G., Schmidt, A., Kunert, K.J., 1986. Effect of SO2 and O3 on production of

antioxidants in conifers. Plant Physiol., 82, 336–338.

Nali, C., Francini, A., Lorenzini, G., 2009. White clover clones as a cost-effective indicator of phytotoxic ozone: 10 years of experience from central Italy. Environ. Pollut., 157, 1421–1426. Okpodu, C. M., Alscher, R. G., Grabau, E. A., Cramer C. L., 1996. Physiological, biochemical and DOI: https://doi.org/10.1016/j.envpol.2008.09.014

molecular effects of sulphur dioxide. J. Plant. Physiol.148, 309 – 316.

Pell, E. J., Temple, P. J., Friend, A. L., Mooney, H. A., Winner, W. E., 1994. Compensation as a plant response to ozone and associated stresses: an analysis of ROPIS experiments. J. Environ. Qual., 23, 429–436. DOI: https://doi.org/10.2134/jeq1994.00472425002300030005x

N. Kopušar, Z. Mazej, F. Batič: Response of an ozone indicator plant before and after ... 45

Peñarrubia, L., Moreno, J., 1999. Molecular Mechanisms of Plant Responses to Elevated Levels of Tropospheric Ozone. In: Pessarakli, M. (Ed.), Handbook of Plant and Crop Stress. Marcel Dekker, New York, Basel. DOI: https://doi.org/10.1201/9780824746728.ch37

Perl-Treves R., Perl A. 2002. Oxidative stress: An introduction. In: Inzé D., Van Montagu M. (Eds.), Oxidative tress in Plants. Taylor & Francis, London and New York, pp. 1–32.

Pfeifhofer, H.W., 1989. On the pigment content of Norway spruce needles infected with Chrysomyxa rhododendri and the carotenoids of fungi aeciospores. Eur. J. Forest Pathol., 19, pp. 363–369. DOI: https://doi.org/10.1111/j.1439-0329.1989.tb00271.x

Rennenber, H, Polle, A., 1994. Metabolic consequences of athmospheric sulphur inlux into plant. In: Alscher, R. G, Wellburn, A. L. (Eds.), Plant Responses to the Gaseous Environment, Chapman & Hall, London, New York, pp. 165–180. DOI: https://doi.org/10.1007/978-94-011-1294-9_9

Sanders, G. E., Skärby, L., Ashmore, M. R., Fuhrer, J., 1995. Establishing critical levels for effects of air pollution on vegetation. Water Air Soil Pollut., 85, pp. 189–200. DOI: https://doi.org/10.1007/BF00483700

Statistical information No. 281. Prices. No 46, 2004. Statistical Ofice of the Republic of Slovenia (20. Sept. 2004). Web site. http://www.stat.si (13. Oct. 2004)

Šircelj, H., Batič, F., Bienelli-Kalpič, A., 1997. Effects of ozone on pigment and ascorbic acid content in white clover (Trifolium repens L. cv. `Menna`) leaves. Acta biol. slov., 41, 4, 43–50.

Tausz, M., Kranner, I., Grill, D., 1996. Simultaneous determination of ascorbic acid and dehydroascorbic in plant materials by High-Performance Liquid Chromatography. Phytochem. Analysis, 7, 1–5. DOI: https://doi.org/10.1002/(SICI)1099-1565(199603)7:2<69::AID-PCA290>3.0.CO;2-#

Vrtačnik, J., Ribarič Lasnik, C., 2001. Ekološka sanacija TEŠ: 1987–2000. ERICo Velenje, 76 pp.

Downloads

Published

01.07.2010

Issue

Section

Original Research Paper

How to Cite

Kopušar, N., Mazej, Z., & Batič, F. (2010). Response of an ozone indicator plant before and after installation of a desulphurization device at a thermal power plant. Acta Biologica Slovenica, 53(1), 35-45. https://doi.org/10.14720/abs.53.1.15472

Similar Articles

1-10 of 107

You may also start an advanced similarity search for this article.