The role of cell selection for pollen grain fertility after treatment of barley sprouts (Hordeum distichum L.) with UV-B irradiation

Authors

  • Elena Kravets

DOI:

https://doi.org/10.14720/abs.54.2.15477

Keywords:

chromosome aberrations, root meristem, microsporangium, cytomixis, pollen grain sterility, cell selection, UV-B radiation, Hordeum distichum L

Abstract

UV-B irradiation of barley sprouts within the range of 0.5-4.3 kJ/m2 induced an increase in the number of chromosome aberrations in the root meristem and pathologies in the reproductive system. Enhancement of cytomixis, increase of polymorphism and cytopathology of pollen grains were observed in the male generative system. The inverse trend was observed when intensity of cytomixis was compared to the pollen grain sterility. Damages induced by low doses of UV-B radiation were eliminated neither by DNA reparation nor by cell selection and were preserved in many cell generations. High UV-B level led to the activation of cytomixis due to which the population of microsporocytes was released from the excess load. It is presumed that cytomixis present a form of cell selection which was induced by an excess of microsporocyte disturbances.

Metrics

Metrics Loading ...

References

Ballaré, C.L., Caldwell, M.M., Robinson, S.A., Flint, S.D., Bornman, J.F., 2011. Effects of solar ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change. Photochem. Photobiol. Sciences, 10, 226-241. DOI: https://doi.org/10.1039/c0pp90035d

Batygina, T.B., 1974. Embryology of wheat, 1st ed. Kolos, Leningrad, 206 pp. (in Rush.) Bedi, Y.S., 1990. Cytomixis in woody species. Proc. Indian Acad. Sci. (Plant Sci.), 100, 233-238. DOI: https://doi.org/10.1007/BF03053475

Bellucci, M., Roscini, C., Mariani, A., 2003. Cytomixis in the Pollen Mother Cells of Medicago sativa L. J. Heredity, 94 (6), 512-516. DOI: https://doi.org/10.1093/jhered/esg096

Bobak, M., Herich, R., 1978. Cytomixis as a manifestation of pathological changes after the application of trifluraline. Nucleus, 21, 22-26.

Caldwell, M.M., Bjorn, L.O., Bornman, J.F., Flint, S.D., Kulandaivelu, G., Teramura, A.H., Tevini M., 2003. Effects of increased solar ultraviolet radiation on terrestrial ecosystems. Photochem. Photobiol. Sci, 46, 40-52. DOI: https://doi.org/10.1016/S1011-1344(98)00184-5

Caldwell, M.M., Bornman, J.F., Ballare, C.L., Flint, S.D., Kulandaivelu, G., 2007. Terrestrial ecosystems, increased solar ultraviolet radiation and interactions with other climatic change factors. Photochem. Photobiol. Sci, 6, 252–266. DOI: https://doi.org/10.1039/b700019g

Calendo, G.S., 2001. Different levels of radio shield in the population of tumor cells. Radiat. biology. Radioecology, 41 (5), 519-527 (in Rush.).

Conner, J. K., Neumeier, R., 2002. The effects of ultraviolet-B radiation and intraspecific competition on growth, pollination success, and lifetime female fitness in Phacelia campanularia and P.purshii (Hydrophyllaceae). Amer. J. Bot., 89, 103-110. DOI: https://doi.org/10.3732/ajb.89.1.103

Demkura, P.V., Abdala, G., Baldwin, I.T., Ballaré, C.L., 2010. Jasmonate dependent and independent pathways mediate specific effects of solar ultraviolet-B radiation on leaf phenolics and antiherbivore defense. Plant Physiology, 152, 1084-1095. DOI: https://doi.org/10.1104/pp.109.148999

Dwivedi, N.K., Sikdar, A.K., Jolly, M.S., Susheelamma, B.N., Suryanarayana, N. 1988. Induction of tetraploidy in colchicine-induced mutant of mulberry. 1. Morphlogical and cytological studies in cultivar Kanva -2. Indian J.Genet., 48, 305-311.

Flint, S.D., Caldwell, M.M., 1984. Partial inhibition of in vitro pollen germination by simulated solar ultraviolet-B radiation. Ecology, 65, 792–795. DOI: https://doi.org/10.2307/1938051

Gaul, H., 1959. Uber die Chmarenbildung in Gerstenpflanzen nach Rongenbestrahjung von Samen. Flora,147 (2), 207-241. DOI: https://doi.org/10.1016/S0367-1615(17)31962-6

Guo, Q.-Q., Zheng, G.-C., 2004. Hypotheses for the function of intercellular bridges in male germ cell development and its cellular mechanisms. J. Theoret. Biol., 229, 139-146. DOI: https://doi.org/10.1016/j.jtbi.2004.03.010

Hamilton, D.A., Mascarenhas, J.P., 1994. Specific character of genetic expression in the pollen. In: Embryology of flowering plants, v.1, 1st ed. Mir i Semja, St. Petersburg, pp.109-111 (in Rush.). Hecht, N.B,. 2000. Intercellular and intercellular transport of many germ cell mRNAs madiated by the DNA- binding protein, testis-brain-RNA-binding protein (TB-RBP). Mol. Reprod. Dev., 56, 252-253. DOI: https://doi.org/10.1002/(SICI)1098-2795(200006)56:2+<252::AID-MRD8>3.0.CO;2-8

Hectors, K, Jacques E., Prinsen, E., Guisez,Y., Verbelen J., Jansen M. and Vissenberg K., 2010. UV radiation reduces epidermal cell expansion in leaves of Arabidopsis thaliana. J. Exp. Bot., 61 (15), 4339-4349. DOI: https://doi.org/10.1093/jxb/erq235

Heslop-Harrison, J. 1966a. Cytoplasmic connections between angiosperms meiocytes. Ann.Bot., 30, P.221-230. DOI: https://doi.org/10.1093/oxfordjournals.aob.a084069

Heslop-Harrison, J., 1966 b. Cytoplasmic continuity during spore formation in flowering plants. Endeavour., 25, 65-72. DOI: https://doi.org/10.1016/0160-9327(66)90071-8

Heslop-Harrison, J., 1979. Aspects of the structure, cytochemistry and germination of pollen of rye (Secale cereale L.). Ann. Bot. 44 (suppl.1), 1-47.

Jordan, B.R. 1996. The effect of ultraviolet-B radiation on plants: a molecular perspective. Advan. Bot. Res, 122, 97-162. DOI: https://doi.org/10.1016/S0065-2296(08)60057-9

Keller, M.M., Jaillais, Y., Pedmale, U.V., Moreno, J.E., Chory, J., Ballaré, C.L., 2011. Cryptochrome 1 and phytochrome B control shade-avoidance responses in Arabidopsis via partially-independent hormonal cascades. The Plant Journal, 67, 195-207. DOI: https://doi.org/10.1111/j.1365-313X.2011.04598.x

Koti, S., Reddy, K.R., Reddy, V.R., Kakani, V.G., Zhao, D., 2004 a. Interactive effects of carbon dioxide, temperature, and ultraviolet-B radiation on soybean (Glycine max) flower and pollen morphology, production, germination and tube lengths. J. Exp.Bot, 56 (412), 725-736. DOI: https://doi.org/10.1093/jxb/eri044

Koti, S., Reddy, K.R., Kakani, V.G., Zhao, D., Reddy, V.R., 2004 b. Soybean (Glycine max) pollen germination characteristics, flower and pollen morphology in response to enhanced ultraviolet-B radiation. Ann. Bot., 94 (6),855-864. DOI: https://doi.org/10.1093/aob/mch212

Koti, S., Reddy, K.R., Kakani, V.G., Zhao, V.G., Gao, W., 2007. Effects of carbon dioxide, temperature and ultraviolet-B radiation and their interactions on soybean (Glycine max L.) growth and development. Environmental and Experimental Botany, 60, 1–10. DOI: https://doi.org/10.1016/j.envexpbot.2006.05.001

Krasylenko, Ya, A., Yemets, A.I., Blume, Ya, B., 2011. Nitric oxide as a critical factor for perception of UV-B irradiation by microtubules in Arabidopsis. Physiol. Plant., DOI: 10.1111/j.1399-3054.2011.01530.x DOI: https://doi.org/10.1111/j.1399-3054.2011.01530.x

Li, F.-R., Peng, S.-L., Chen, B.-M., Hou, Y.-P., 2010. A meta-analysis of the responses of woody and herbaceous plants to elevated ultraviolet-B radiation. Acta Oecologica, 36, (1), 1-9. Lytvyn, D.I., Yemets, A.I., Blume, Y.B., 2010. UV-B overexposure induces programmed cell death in DOI: https://doi.org/10.1016/j.actao.2009.09.002

a BY-2 tobacco cell line. Environ Exp. Bot., 68, 51-57.

Mantu, D.E., Sharma, A.K., 1982. Cytomixis in pollen cells of an apomictic ornamental Ervatamia divaricata (L.) Alston. Cytologia, 48, 201-207. DOI: https://doi.org/10.1508/cytologia.48.201

Mascarenhas, J. P., 1989. The male gametophyte of flowering plants. Plant Cell, 1, 657-664. DOI: https://doi.org/10.1105/tpc.1.7.657

Mascarenhas, J. P., 1990. Gene activity during pollen development. Ann. Rev. Plant Physiol. Plant Mol. Biol., 41, 317-338. DOI: https://doi.org/10.1146/annurev.pp.41.060190.001533

Nirmala, C., Kaul, M.L.H., 1991. Male sterility in pea. Y1 Gene action duplicity. Cytologia, 59, 195-201. DOI: https://doi.org/10.1508/cytologia.59.195

Orlova, I.N., 1994. Cytomixis. In: Embryology of flowering plants. v.1, 1st ed. Mir i Semja, St. Petersburg, pp. 115-117 (in Rush.). Pausheva, Z P., 1984. Practical work for plant cytology, 2-nd ed Кolos, Мoscow.– 284 pp.(in Rush.) Poddubnaya-Arnoldi ,V.A., 1976. Cytoembryology of angiosperms. 2th ed. Nauka, Moscow, 507 pp. (in Rush.). Risueno, M.C., Gimenez-Martin, G., Lopez-Saez, J.F., R-Garsia, M.I., 1969. Connexions between meiocytes in plants. Cytologia, 34, 262-272. DOI: https://doi.org/10.1508/cytologia.34.262

Santos, A., Almeida, J.M., Santos, I., Salema, R., 1998. Biochemical and ultrastructural changes in pollen of Zea mays L. grown under enchanced UV-B radiation. Ann. Bot, 2, 641-645. DOI: https://doi.org/10.1006/anbo.1998.0724

de Souza, A.M., Pagliarini, M.S,. 1997. Cytomixis in Brassica napus var. oleifera (Brassicaeae). Cytologia, 62, 25-29. DOI: https://doi.org/10.1508/cytologia.62.25

Tevini, M., Iwanzik, W., Thoma, U., 1981. Some effects of enhanced UV-B irradiation on the growth and composition of plants. Planta,153, 388-394. DOI: https://doi.org/10.1007/BF00384258

Torabinejad, J., Caldwel,l M.M., Flint, S.D., Durham, S., 1998. Susceptibility of pollen to UV-B radiation: an assay of 34 taxa. Amer. J. Bot., 85 (360), 855-868. DOI: https://doi.org/10.2307/2446329

Welan, E.D.P., 1974. Discontinuities in the callose wall, intermeiocyte connections and cytomixis in angiosperm meiocytes. Can. J. Bot., 52, 1219-1224. DOI: https://doi.org/10.1139/b74-157

Zhang, M, An L, Feng, Р, Chen, T, Chen, K, Liu, Y,Tang ,H, Chang, J, Wang, X, 2003. The cascade mechanisms of nitric oxide as a second messenger of ultraviolet-B in inhibiting mesocotyl elongations. Photochem Photobiol, 77, 219–225. DOI: https://doi.org/10.1562/0031-8655(2003)077<0219:TCMONO>2.0.CO;2

Zheng, G.C., Yang, Q.R., Zheng, Y.R., 1987. The relationship between cytomixis and chromosome mutation and karyotype evolution in lily. Caryologia, 40, 243-259. DOI: https://doi.org/10.1080/00087114.1987.10797827

Ziska, L.H., Teramura, A.H., Sullivan, J.H., 1992. Physiological sensitivity of plants along an elevational gradient to UV-B radiation. Amer. J. Botany, 79, 863–871. DOI: https://doi.org/10.1002/j.1537-2197.1992.tb13667.x

Ziska, L.H., Teramura, A.H., 1992. C0(2) Enhancement of Growth and Photosynthesis in Rice (Oryza sativa): Modification by Inceased Ultraviolet-B Radiation. Plant Physiology, 99 (2), 473-481. DOI: https://doi.org/10.1104/pp.99.2.473

Downloads

Published

01.12.2011

Issue

Section

Original Research Paper

How to Cite

Kravets, E. (2011). The role of cell selection for pollen grain fertility after treatment of barley sprouts (Hordeum distichum L.) with UV-B irradiation. Acta Biologica Slovenica, 54(2), 31-41. https://doi.org/10.14720/abs.54.2.15477