Seasonal changes in the concentration of some trace elements in macrophyte shoots

Authors

  • Zdenka Mazej Grudnik

DOI:

https://doi.org/10.14720/abs.53.1.15496

Keywords:

trace elements, sediment, Velenjsko jezero, Myriophyllum, Najas, Potamogeton, Nuphar

Abstract

Seasonal changes in the concentrations of trace elements (Ni, Cu, Pb, Zn, Cr and As) were analysed in shoots of macrophytes Myriophyllum spicatum, Najas marina, Potamogetoncrispus, Potamogeton lucens, Potamogeton nodosus, Potamogeton pectinatus and Nuphar lutea taken from lake Velenjsko jezero (Slovenia), an artificial lake resulting from mining activity. Lake lies in the vicinity of the Šoštanj Thermal Power Plant, from which fly ash slurry was transported by pipeline and emptied into Velenjsko jezero until 1983. The degree of concentration of elements in plant’s shoots varied according to the species of plant and the time of the season. The average concentrations of non-essential elements (Ni, Cr, Pb and As) in stems and leaves were the highest in Myriophyllum spicatum and the lowest in Nuphar lutea. Concentration of two essential elements Cu and Zn were the highest in the shoots of Potamogeton lucens and Potamogeton crispus respectively. Element concentration showed seasonal variation. For essential elements Zn and Cu there was a clear concentration decline from May to September in almost all macrophyte shoots, while non-essential elements remained at the same level or decreased through the season.

Metrics

Metrics Loading ...

Downloads

Download data is not yet available.

References

Adriano, D.C., 1986. Trace elements in Terrestrial Environment. Springer-Verlag, New York. DOI: https://doi.org/10.1007/978-1-4757-1907-9

Baldantoni D., Maisto G., Bartoli G. & A. Alfani 2005: Analyses of three native aquatic plant species to assess spatial gradient of lake trace element contamination. Aquatic Botany, 83, 48–60. DOI: https://doi.org/10.1016/j.aquabot.2005.05.006

Brekken, A., Steinnes, E., 2004. Seasonal concentration of cadmium and zinc in native pasture plants: consequence for grazing animals. Science of the Total Environment, 326, 181–195. DOI: https://doi.org/10.1016/j.scitotenv.2003.11.023

Cardwell, A.J., Hawker, D.W., Greenway, M., 2002: Heavy metal accumulation in aquatic macrophytes from southeast Queensland, Australia. Chemosphere, 48, 653–663. DOI: https://doi.org/10.1016/S0045-6535(02)00164-9

Duman, F., Obali, O., Demirezen, D., 2006. Seasonal changes of metal accumulation and distribution in shining pondweed (Potamogeton lucens). Chemosphere, 65, 2145–2151. DOI: https://doi.org/10.1016/j.chemosphere.2006.06.036

Duman F., Cicek, M., Sezen, G., 2007. Seasonal changes of metal accumulation and distribution in common club rush (Schoenoplectus lacustris) and common reed (Phragmites australis). Ecoto- xicology, 16, 457–463. DOI: https://doi.org/10.1007/s10646-007-0150-4

Fritioff, Å., Greger, M., 2003. Aquatic and terrestrial plant species with potential to remove trace elements from stormwater. International Journal of Phytoremediation, 5, 211–224. DOI: https://doi.org/10.1080/713779221

Fritioff, Å., Kautsky, L., Greger, M., 2005. Inluence of temperature and salinity on heavy metal uptake by submersed plant. Environmental Pollution, 133, 265–274. DOI: https://doi.org/10.1016/j.envpol.2004.05.036

Furtado, A.L.S., 1998. Ash free dry weight, organic carbon, nitrogen and phosphorus content of Typha domingensis Pers. (Thyphaceae) and aquatic macrophyte. Verhandlungen – Internationale Vereinigung für Limnology, 26, 1842–1845. DOI: https://doi.org/10.1080/03680770.1995.11901057

Garbey, C., Murphy, K.J., Thiébaut, G. Muller, S., 2004. Variation in P-content in aquatic plant tissues offers an eficient tool for determining plant growth strategies along a resource gradient. Freshwater Biology, 49, 346–356. DOI: https://doi.org/10.1111/j.1365-2427.2004.01188.x

Gommes, R., Muntau, H., 1981. Variation saisonnière de la composition chimique des limnophytes du Lago Maggiore. Memorie dell’Istituto Italiano di Idrobiologia, 38, 309–330.

Guilizzoni, P., 1991. The role of trace elements and toxic materials in the physiological ecology of submersed macrophytes. Aqutic Botany, 41, 87–109. DOI: https://doi.org/10.1016/0304-3770(91)90040-C

Hotzina, E.I., Khramov, A.A., Gerasimov, P.A., Kumarkov, A.A., 2001. Uptake of trace elements, arsenic and antimony by aquatic plants in the vicinity of ore mining and processing industries. Journal of Geochemical Exploration, 74, 153–162. DOI: https://doi.org/10.1016/S0375-6742(01)00181-9

Jackson, L.J., Kalff, J., 1993. Patterns in heavy metal content of submerged aquatic macrophytes: the role of plant growth form. Freshwater Biology, 29, 351–359. DOI: https://doi.org/10.1111/j.1365-2427.1993.tb00769.x

Jackson, L.J., 1998. Paradigms of metal accumulation in rooted aquatic vascular plants. Science of the Total Environment, 219 (2–3), 223–231. DOI: https://doi.org/10.1016/S0048-9697(98)00231-9

Kim, N.D., Fergusson, J.E., 1994. Seasonal variations in the concentration of cadmium, copper, lead and zinc in leaves of the horse chestnut (Aesculus hippocastanum L.). Environmental Pollution, 86, 89–97. DOI: https://doi.org/10.1016/0269-7491(94)90010-8

Mazej, Z., Germ, M., 2008. Seasonal changes in the contents of nutrients in ive macrophyte species from the lake Velenjsko jezero (Slovenia) = Sezonske spremembe vsebnosti hranil v petih vrstah makroitov iz Velenjskega jezera (Slovenija). Acta Biologica Slovenica, 51(1), 3–11. DOI: https://doi.org/10.14720/abs.51.1.15221

Mazej, Z., Germ, M., 2009. Trace element accumulation and distribution in four aquatic macrophytes. Chemosphere, 74, 642–647. DOI: https://doi.org/10.1016/j.chemosphere.2008.10.019

Mazej, Z., Al Sayegh Petkovšek, S., Pokorny, B., 2010. Heavy metal concentrations in food chain of lake Velenjsko jezero, Slovenia: an artiicial lake from mining. Archives of Environmental Contamination and Toxicology, 58, 998–1007. DOI: https://doi.org/10.1007/s00244-009-9417-5

Martin, M., Couphtrey, P. 1982: Biological monitoring of heavy metal pollution. Applied Sciences Publications, London, New York, 475 pp.

Nan, Z., Li, J., Zhang, J., Cheng, G., 2002. Cadmium and zinc interactions and their transfer in soil- crop system under actual ield conditions. Science of the Total Environment, 285, 187–195. DOI: https://doi.org/10.1016/S0048-9697(01)00919-6

Peng, K., Luo, C., Lou, L., Li, X., Shen, Z., 2008. Bioaccumulation of trace elements by the aquatic plants Potamogeton pectinatus L. and Potamogeton malaianus Miq. and their potential use for con- tamination indicators and wastewater treatment. Science of the Total Environment, 392, 22–29. DOI: https://doi.org/10.1016/j.scitotenv.2007.11.032

Reimer, P., Duthie, H.C. 1993. Concentration of Zn and chromium in aquatic macrophytes from the Sudbury and Muskoka regions of Ontario, Canada. Environmental Pollution, 79, 261–265. DOI: https://doi.org/10.1016/0269-7491(93)90098-9

Sinicrope, T.L., Langis, R., Gersberg, R.M., Busanardo, M.J., Zedler J.B., 1992. Metal removal by wetland mesocosms subjected to different hydroperiods. Ecological Engineering, 1, 309–322. DOI: https://doi.org/10.1016/0925-8574(92)90013-R

Villares, R., Puente, X., Carballeira, A., 2002. Seasonal variation and background levels of trace elements in two green seaweeds. Environmental Pollution, 119, 79–90. DOI: https://doi.org/10.1016/S0269-7491(01)00322-0

Wilkins, D.A., 1978. The measurement of tolerance to edaphic factors by means of root growth. New Phytology, 80, 623–633. DOI: https://doi.org/10.1111/j.1469-8137.1978.tb01595.x

Downloads

Published

01.07.2010

Issue

Section

Original Research Paper

How to Cite

Mazej Grudnik, Z. (2010). Seasonal changes in the concentration of some trace elements in macrophyte shoots. Acta Biologica Slovenica, 53(1), 55-61. https://doi.org/10.14720/abs.53.1.15496