Respiration and ingestion rate of different sized Daphnia pulex fed on four algal species

Authors

  • Tatjana Simčič

DOI:

https://doi.org/10.14720/abs.53.2.15507

Keywords:

ingestion rate, respiration, Daphnia pulex, algae, growth scope

Abstract

Respiration rate and ingestion rate for four different algal species (Scenedesmus quadricauda, Asterionella formosa, Aphanizomenon flos-aquae and Planktotrix rubescens) of different sized Daphnia pulex were measured in the laboratory. Population of D. pulex grew maximally when it fed S.quadricauda, but the presence of P. rubescens and A. flos-aquae caused negative population growth rate. Ingestion rates increased with increasing body size for all in- vestigated algae; the lowest b value was obtained for S. quadricauda and the highest one for P. rubescens. The amount of ingested carbon exceeded the required amount for standard metabolism in both small and large sized individuals fed all four algal species. Relatively higher amount of ingested A. flos-aquae and P. rubescens in comparison with A. formosa and S. quadricauda and the results of the growth experiments indicate that the inhibitory effect of filamentous blue-green algae on D. pulex is more due to toxicity, low assimilation efficiency or/and inadequate composition than incapability of ingestion due to mechanical interference with filaments.

References

Arnold, D. E., 1971. Ingestion, assimilation, survival, and reproduction by Daphnia pulex fed seven species of blue-green algae. Limnol. Oceanogr., 16 (6), 906-920. DOI: https://doi.org/10.4319/lo.1971.16.6.0906

Butler, N. M., Suttle, C. A., Neill, W. E. 1989. Discrimination by freshwater zooplankton between single algal cells differing in nutritional status. Oecologia, 78 (3), 368-372. DOI: https://doi.org/10.1007/BF00379111

DeMott, W. R. 1982. Feeding selectivities and relative ingestion rates of Daphnia and Bosmina. DOI: https://doi.org/10.4319/lo.1982.27.3.0518

Limnol. Oceanogr., 27 (3), 518-527.

DeMott, W. R. 1999. Foraging strategies and growth inhibition in five daphnids feeding on mixtures of a toxic cyanobacterium and a green algae. Freshwater Biol., 42 (2), 263-274. DOI: https://doi.org/10.1046/j.1365-2427.1999.444494.x

Ferrão-Filho, A. S., Fileto, C., Lopes N. P., Arcifa, M. S., 2003. Effect of essential fatty acids and N and P-limited algae on the growth rate of tropical cladocerans. Freshwater Biol., 48 (5), 758-767. Fulton III, R. S. 1988. Grazing on filamentous algae by herbivorous zooplankton. Freshwater Biol., DOI: https://doi.org/10.1046/j.1365-2427.2003.01048.x

(2), 263-271.

Gilbert, J. J., Durand, M. W., 1990. Effect of Anabaena flos-aquae on the abilities of Daphnia and Keratella to feed and reproduce on unicellular algae. Freshwater Biol., 24 (3), 577-596. DOI: https://doi.org/10.1111/j.1365-2427.1990.tb00734.x

Gladyshev, M. I., Sushchik, N. N., Dubovskaya, O. P., Makhutova, O. N., Kalachova, G. S., 2008. Growth rate of Daphnia feeding on seston in a Siberian reservoir: the role of essential fatty acid. Aquat. Ecol., 42,617–627. DOI: https://doi.org/10.1007/s10452-007-9146-7

Gliwicz, Z. M., 1977. Food size selection and seasonal succession of filter feeding zooplankton in an eutrophic lake. Ekol. Pol., 25(2), 179-225.

Gliwicz, Z. M., 1990. Daphnia growth at different concentration of blue-green filaments. Arch. Hydrobiol., 120 (1), 51-65. DOI: https://doi.org/10.1127/archiv-hydrobiol/120/1990/51

Gulati, R. D., DeMott, W. R., 1997. The role of food quality for zooplankton: remarks on the state- of-the-art, perspectives and priorities. Freshwater Biol., 38 (3), 753-768. DOI: https://doi.org/10.1046/j.1365-2427.1997.00275.x

Hawkins, P., Lampert, W., 1989. The effect of Daphnia body size on filtering rate inhibition in the presence of a filamentous cyanobacterium. Limnol. Oceanogr., 34 (6), 1084-1089. DOI: https://doi.org/10.4319/lo.1989.34.6.1084

ISO-standard 6341:1996 (E). Determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea)-Acute toxicity test - Third edition International Organization for Standardization, Geneve, 1996.

Kilham, S. S., Kreeger, D. A, Goulden, C. E., Lynn, S. G., 1997. Effects of algal food quality on fecundity and population growth rates of Daphnia. Freshwater Biol., 38 (3), 639-647. DOI: https://doi.org/10.1046/j.1365-2427.1997.00232.x

Knisely, K., Geller, W., 1986. Selective feeding of four zooplankton species on natural lake phyto- plankton. Oecologia (Berlin), 69 (1), 86-94. DOI: https://doi.org/10.1007/BF00399042

Lampert, W., 1984. The measurement of respiration. In: Downing, J. A., Rigler, F. H. (eds), A manual on methods for the assessment of secondary productivity in fresh water. IPB Handbook 17, second edition, Blackwell Scientific Publications, pp. 413-468.

Lampert, W., 1987. Feeding and nutrition in Daphnia, In: Peters, R. H., de Bernardi, R. (Eds), Daphnia, Memorie dell’Istituto Italiano di Idrobiologia. Verbania Pallanza, vol. 45, pp. 143-192.

Martin-Creuzburg, D., von Elert, E., 2009. Good food versus bad food: the role of sterols and polyun- saturated fatty acids in determining growth and reproduction of Daphnia magna. Aquat. Ecol., 43, 943–950. DOI: https://doi.org/10.1007/s10452-009-9239-6

Mourelatos, S., Lacroix, G., 1990. In situ filtering rates of Cladocera: Effect of body length, tempe- rature, and food concentration. Limnol. Oceanogr., 35 (5), 1101-1111. DOI: https://doi.org/10.4319/lo.1990.35.5.1101

Park, S., Brett, M. T., Müller-Navarra, D. C., Goldman, C. R., 2002. Essential fatty acid content and the phosphorus to carbon ratio in cultured algae as indicators of food quality for Daphnia. Fre- shwater Biol., 47 (8), 1377-1390. DOI: https://doi.org/10.1046/j.1365-2427.2002.00870.x

Philippova, T. G., Postnov, A. L., 1988. The effect of food quality on feeding and metabolic expenditure in Cladocera. Int. Revue ges Hydrobiol., 73 (6), 601-615. DOI: https://doi.org/10.1002/iroh.19880730602

Porter, G. K., Gerritsen, J., Orcutt Jr., J. D. 1982., The effect of food concentration on swimming pat- terns, feeding behaviour, ingestion, assimilation and respiration by Daphnia. Limnol. Oceanogr., 27 (5), 935-949. DOI: https://doi.org/10.4319/lo.1982.27.5.0935

Richman, S., Dodson, S. I., 1983. The effect of food quality on feeding and respiration by Daphnia and Diaptomus. Limnol. Oceanogr., 28 (5), 948-956. DOI: https://doi.org/10.4319/lo.1983.28.5.0948

Sundbom. M., Vrede, T., 1997. Effects of fatty acid and phosphorous content of food on the growth, survival and reproduction of Daphnia. Freshwater Biol., 38 (3), 665-674. DOI: https://doi.org/10.1046/j.1365-2427.1997.00235.x

Trabeau, M., Bruhn-Keup, R., McDermott, C., Keomany, M., Millsaps, A., Emery, A., de Stasio Jr., B., 2004. Midsummer decline of a Daphnia population attributed in part to cyanobacterial capsule production. J. Plankton Res., 26 (8), 949-961. DOI: https://doi.org/10.1093/plankt/fbh076

Urabe, J., Watanabe, Y., 1991. Effect of food concentration on the assimilation and production effi- ciencies of Daphnia galeata G.O. Sars (Crustacea: Cladocera). Functional Ecology, 5(5), 635–641. DOI: https://doi.org/10.2307/2389482

Vijverberg, J., 1989. Culture techniques for studies on growth, development and reproduction of copepods and cladocerans under laboratory and in situ conditions: a review. Freshwater Biol., 21 (3), 317-373. DOI: https://doi.org/10.1111/j.1365-2427.1989.tb01369.x

Wagner, A., Kamjunke, N., 2001. Reduction of the filtration of Daphnia galeata by dissolved photo- synthetic products of edible phytoplankton. Hydrobiologia, 442 (1-3), 165-176. DOI: https://doi.org/10.1023/A:1017538223689

Downloads

Published

01.12.2010

Issue

Section

Original Research Paper

How to Cite

Simčič, T. (2010). Respiration and ingestion rate of different sized Daphnia pulex fed on four algal species. Acta Biologica Slovenica, 53(2), 61-70. https://doi.org/10.14720/abs.53.2.15507

Similar Articles

1-10 of 80

You may also start an advanced similarity search for this article.