Preliminary multispecies test of a model for non-lethal estimation of metabolic activity in freshwater crayfish
DOI:
https://doi.org/10.14720/abs.55.1.15522Keywords:
electron transport system (ETS) activity, crayfish, size scaling, methodAbstract
We tested the applicability of electron transport system (ETS) derived from a single leg as a tool for non-lethal assessment of metabolicactivity in freshwater crayfish. ETS activity of the whole body and of a leg was measured in four crayfish (Arthropoda, Crustacea, Decapoda)species: two European (Astacus astacus, Austro- potamobius torrentium), and two North American (Orconectes limosus, Pacifastacusleniusculus). Mass scaling of whole body ETS activity (ETSwhole) and leg ETS activity (ETSleg) was not significantly different for the European A. astacus and the America O. limosus. Therefore common models were constructed and tested on the remaining two species. The ratio ETSwhole/ETSleg was significantly positively related to body mass. In the first model (model 1) ETSwhole was calculated from ETSleg multiplied by the ratio estimated from the known body mass. ETSwhole of A. torrentium was underestimated by this model, because they mature at smaller body size than the larger species. A direct relation between ETSleg and ETSwhole was therefore proposed as a general model (model 2), since they are correlated similarly in the studied species. The results show that model 2 is suitable for estimating the whole body ETS activity from leg ETS activity for the four investigated decapods.
Metrics
References
Bamstedt, U. 1980. ETS activity as an estimator of respiratory rate of zooplankton populations. The significance of variations in environmental factors. J. Exp. Mar. Biol. Ecol., 42, 267–283. DOI: https://doi.org/10.1016/0022-0981(80)90181-1
Bamstedt, U. 1988. Ecological significance of individual variability in copepod bioenergetics. Hydro- biologia, 167/168, 43–59. DOI: https://doi.org/10.1007/BF00026293
Berges, J. A., Ballantyne, J. S., 1991. Size scaling of whole-body maximal enzyme activities in aquatic crustaceans. Can. J. Fish Aquat. Sci., 48, 2385–2394. DOI: https://doi.org/10.1139/f91-279
Berges, J. A., Roff, J. C., Ballantyne, J. S., 1990. Relationship between body size, growth rate, and maximal enzyme activities in the brine shrimp, Artemia franciscana. Biol. Bull., 179, 287–296. Berges, J. A., Roff, J. C., Ballantyne, J. S., 1993. Enzymatic indices of respiration and ammonia excretion: relationships to body sizes and food levels. J. Plankton Res., 15, 239–254. DOI: https://doi.org/10.2307/1542320
Borgmann, U. 1977. Electron transport system activity in Daphnia and crayfish. Can. J. Zool., 55, 847–854. DOI: https://doi.org/10.1139/z77-110
Borgmann, U., 1978. The effect of temperature and body size on electron transport system activity in freshwater zooplankton. J. Zool., 56, 634–642. DOI: https://doi.org/10.1139/z78-091
Buikema, A. L. Jr., 1972. Oxygen consumption of the cladoceran, Daphnia pulex, as a function of body size, light and light acclimatization. Comp. Biochem. Physiol., 42A, 877–888. DOI: https://doi.org/10.1016/0300-9629(72)90394-5
Covich, A. P., Palmer, M. A., Crowl, T. A., 1999. The role of benthic invertebrate species in freshwater ecosystems. BioScience, 49, 119–127. DOI: https://doi.org/10.2307/1313537
Cammen, L. M., Corwin, S., Christensen, J. P., 1990. Electron transport system (ETS) activity as a measure of benthic macrofaunal metabolism. Mar. Ecol. Prog. Ser., 65, 171–182. DOI: https://doi.org/10.3354/meps065171
Demers, A., Souty-Grosset, C., Trouilhe, M.-C., Füreder, L., Renai, B., Gherardi, F., 2006. Tolerance of three European native species of crayfish to hypoxia. Hydrobiologia, 560, 425–432. DOI: https://doi.org/10.1007/s10750-005-1466-9
Firkins, I., Holdich, D. M., 1993. Thermal studies with three species of freshwater crayfish. Freshwater Crayfish, 9, 241–248.
Gil-Sánchez, J. M., Alba-Tercedor, J., 2002. Ecology of the native and introduced crayfishes Austro- potamobius pallipes and Procambarus clarkii in southern Spain and implications for conservation of the native species. Biol. Conserv., 105, 75–80. DOI: https://doi.org/10.1016/S0006-3207(01)00205-1
Glazier, D. S., 1991. Separating the respiration rates of embryos and brooding females of Daphnia magna: Implications for the cost of brooding and the allometry of metabolic rate. Limnol. Oce- anogr., 36, 354–362. DOI: https://doi.org/10.4319/lo.1991.36.2.0354
G.-Tóth, L., Drits, A. V., 1991. Respiratory energy loss of zooplankton in Lake Balaton (Hungary) estimated by ETS-activity measurements. Verh. Internat. Verein. Limnol., 24, 993–996. DOI: https://doi.org/10.1080/03680770.1989.11898897
G.-Tóth, L., Carrillo, P., Cruz-Pizarro, L., 1995a. Respiratory electron transport system (ETS)-activity of the plankton and biofilm in the high-mountain lake La Caldera (Sierra Nevada, Spain). Arch. Hydrobiol, 135, 65–78. DOI: https://doi.org/10.1127/archiv-hydrobiol/135/1995/65
G.-Tóth, L., Szabó, M., Webb, D. J., 1995b. Adaptation of the tetrazolium reduction test for the me- asurement of the electron transport system (ETS)-activity during the embryonic development of medaka. J. Fish. Biol., 46, 835–844. DOI: https://doi.org/10.1111/j.1095-8649.1995.tb01606.x
G.-Tóth, L., 1999. Aktivität des Elektronentransportsystems, In: von Tümpling W. and G. Friedrich (eds): Biologische Gewässeruntersuchung. Methoden der Biologischen Wasseruntersuchung 2, Gustav Fischer Verl., Jena, Stuttgart, Lübeck, Ulm, pp. 465–473.
Holdich, D. M. (ed.), 2002. Biology of freshwater crayfish. Blackwell Sciences Ltd, Oxford.
Holdich, D. M., Reader, J. P., Rogers, W. D., Harlioglu, M., 1995. Interactions between three species of crayfish (Austropotamius pallipes, Astacus leptodactylus and Pacifastacus leniusculus). Fre- shwater Crayfish, 10, 46–56.
Holdich, D. M., Reynolds, J. D., Souty-Grosset, C., Sibley P. J., 2009. A review of the ever increasing threat to European crayfish from non-indigenous crayfish species. Knowl. and Manag. Aquat. Ec., 394–395, 11. DOI: https://doi.org/10.1051/kmae/2009025
Hudina, S., Galić, N., Roessink, I., Hock, K., 2011. Competitive interactions between co-occuring invaders: identifying asymmetries between two invasive crayfish species. Biol. Invasions, 13, 1791–1803. DOI: https://doi.org/10.1007/s10530-010-9933-2
Ivleva, I. V., 1980. The dependence of crustacean respiration rate on body mass and habitat temperature. Int. Rev. Gesamten Hydrobiol., 65, 1–47. DOI: https://doi.org/10.1002/iroh.19800650102
James, M. R., 1987. Respiratory rates in cladoceran Ceriodaphnia dubia in lake Rotiongaio, a mono- mictic lake. J. Plankton Res., 9, 573–578. DOI: https://doi.org/10.1093/plankt/9.4.573
Kenner, R. A., Ahmed, S. I., 1975. Measurements of electron transport activities in marine phyto- plankton. Marine Biology, 33, 119–127. DOI: https://doi.org/10.1007/BF00390716
Marshall, D. J., Perissionotto, R., Holley, J. F., 2003. Respiratory responses of the mysid Gastrosaccus brevifissura (Peracarida: Mysidacea), in relation to body size, temperature and salinity. Comp. Biochem. Physiol., 134A, 257–266. DOI: https://doi.org/10.1016/S1095-6433(02)00258-1
Mezek, T., Simčič, T., Michael, T. A., Brancelj, A., 2010. Effect of fasting on hypogean (Niphargus stygius) and epigean (Gammarus fossarum) amphipods: a laboratory study. Aquat. Ecol., 44, 397–408. DOI: https://doi.org/10.1007/s10452-009-9299-7
Momot, W. T., Gowing, H., Jones, P. D., 1978. The dynamics of crayfish and their role in ecosystems. Am. Midl. Nat., 99, 10–35. DOI: https://doi.org/10.2307/2424930
Muskó, I. B., G.-Tóth, L., Szábo, E., 1995. Respiration and respiratory electron transport system (ETS) activity of two amphipods: Corophium curvispinum G. O. Sars and Gammarus fossarum Koch. Pol. Arch. Hydrobiol.,42, 547–558.
Nyström, P., 2002. Ecology, pp. 190–235. In: Holdich, D. M. (ed.), Biology of Freshwater Crayfish. Blackwell Science, Oxford, UK.
Packard, T. T., 1971. The measurement of respiratory electron- transport activity in marine phyto- plankton. J. Mar. Res., 29, 235–244.
Packard, T. T., 1985. Measurement of electron transport activity of microplankton, pp. 207–261. In, Jannas, H. and P. J. LeB. Williams (eds), Advances in aquatic microbiology 3, Academic Press, London.
Paglianti, A., Gherardi, F., 2004. Combined effects of temperature and diet on growth and survival of young-of year crayfish: A comparison between indigenous and invasive species. J. Crustacean Biol., 24, 140–148. DOI: https://doi.org/10.1651/C-2374
Peters, R. H., 1983. The ecological implications of body size. Cambridge University Press, Cam- bridge. DOI: https://doi.org/10.1017/CBO9780511608551
Simčič, T., Brancelj A., 1997. Electron transport system (ETS) activity and respiration rate in five Daphnia species at different temperatures. Hydrobiologia, 360, 117–125. DOI: https://doi.org/10.1007/978-94-011-4964-8_13
Simčič, T., Brancelj, A., 2000. Energy exploitation in Chirocephalus croaticus (Steuer, 1899) (Crustacea:Anostraca): survival strategy in an intermittent lake. Hydrobiologia, 437, 157–163. DOI: https://doi.org/10.1023/A:1026507024238
Simčič, T., Brancelj, A., 2003. Estimation of the proportion of metabolically active mass in the amphipod Gammarus fossarum. Freshwater Biol., 48, 1093–1099. DOI: https://doi.org/10.1046/j.1365-2427.2003.01075.x
Simčič, T., Brancelj, A., 2004. Respiratory electron transport system (ETS) activity as an estimator of the thermal tolerance of two Daphnia hybrids. J. Plankton Res., 26, 525–534. DOI: https://doi.org/10.1093/plankt/fbh056
Simčič, T., Lukančič, S., Brancelj, A., 2005. Comparative study of electron transport system activity and oxygen consumption of amphipods from caves and surface habitats. Freshwater Biol., 50, 494–501. DOI: https://doi.org/10.1111/j.1365-2427.2005.01339.x
Simčič, T., Brancelj, A., 2006. Effects of pH on electron transport system (ETS) activity and oxygen consumption in Gammarus fossarum, Asellus aquaticus and Niphargus sphagnicolus. Freshwater Biol., 51, 686–694. DOI: https://doi.org/10.1111/j.1365-2427.2006.01522.x
Simčič, T., Brancelj, A., 2007. The effect of light on oxygen consumption in two amphipod crusta- ceans – the hypogean Niphargus stygius and the epigean Gammarus fossarum. Mar. Fresh. Beh. Physiol. ,40, 141–150. DOI: https://doi.org/10.1080/10236240701452465
Simčič, T., Pajk, F., Brancelj, A., 2010. Electron transport system activity and oxygen consumption of two amphibious isopods, epigean Ligia italica Fabricius and hypogean Titanethes albus (Koch), in air and water. Mar. Fresh. Beh. Physiol., 43, 149–156. DOI: https://doi.org/10.1080/10236244.2010.483052
Simčič, T., Pajk, F., Vrezec, A., Brancelj, A., 2012. Size scaling of whole-body metabolic activity in the noble crayfish (Astacus astacus) estimated from measurements on a single leg. Freshwater Biol., 57, 39–48. DOI: https://doi.org/10.1111/j.1365-2427.2011.02692.x
Souty-Grosset, C., Holdich, D. M., Noël, P. Y., Reynolds, J. D., Haffner, P., 2006. Atlas of Crayfish in Europe. Muséum National d’Histoire Naturelle, Paris.
Styrishave, B., Bojsen, B. H., Witthøfft, H., Andersen, O., 2007. Diurnal variations in physiology and behaviour of the noble crayfish Astacus astacus and the signal crayfish Pacifastacus leniusculus. Mar. Fresh. Beh. Physiol., 40, 63–77. DOI: https://doi.org/10.1080/10236240701241538
Tamkevičiene, E. A., 1988. Growth and development of juveniles of the native and introduced species of freshwater crayfish. Freshwater Crayfish, 7, 396–400.
Taylor, C. A., 2002. Taxonomy and conservation of native crayfish stocks, pp. 236–257. In: Holdich, D. M. (ed.), Biology of freshwater crayfish. Blackwell Science, Oxford.
Wheatly, M. G., 1989. Standard rate of O2 uptake and body size in the crayfish Pacifastacus leniu- sculus (Dana, 1852) (Decapoda: Astacidae): Intra- versus interspecific relations in crustaceans. J. Crustacean Biol., 9, 212–216. DOI: https://doi.org/10.1163/193724089X00034
Wolvekamp, H. P. I., Waterman T. H., 1960. Respiration, pp. 35–100. In: Waterman, T. H. (ed.): Physiology of Crustacea, Vol 1. Academic Press, New York. DOI: https://doi.org/10.1016/B978-0-12-395628-6.50008-7
Table 1: Results of statistical testing (for details see methods) of the differences in intercept and slope between Orconectes limosus and Astacus astacus for the specified relationships (ETSwhole – whole body ETS activity, ETSleg – leg ETS activity, PROTwhole – whole body protein content, PROTleg – protein content of a leg).
Tabela 1: Rezultati statističnega testiranja (za podrobnosti glej metode) razlik v odseku in naklonu med vrstama Orconectes limosus in Astacus astacus za podana razmerja (ETSwhole – aktivnost ETS celega telesa, ETSleg – aktivnost ETS noge, PROTwhole – vsebnost proteinov v celem telesu, PROTleg – vsebnost proteinov v nogi).
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.