Elemental composition of wheat, common buckwheat, and tartary buckwheat grains under conventional production
DOI:
https://doi.org/10.14720/abs.55.2.15529Keywords:
dietary reference intake, energy dispersive X-ray fluorescence spectro- metry, Fagopyrum esculentum, Fagopyrum tataricum, metals, minerals, trace elements, Triticum aestivum, total reflection X-ray fluorescence spectrometryAbstract
The elemental composition of cereal and pseudocereal grain is believed to significantly affect the portions of the minerals supplied for particular human populations. Therefore, care needs to be taken to improve the availability of the essential elements and to decrease unwanted metal accumulation in edible plant parts. In the present study, we have investigated the element accumulation in the grain of wheat (Triticum aestivum L.), common buckwheat (Fagopyrum esculentum Moench), and tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.), harvested from the same field under conventional grain production. Soil and grain element compositions were analysed using energy dispersive X-ray fluorescence spectrometry and total reflection X-ray fluorescence spectrometry. The wheat grain shows significantly higher (p < 0.05) higher element concentrations than both of the buckwheat species tested. The contents of elements in 100 g grain were higher than the concentrations listed in the literature for wheat and buckwheat flours, which indicates significant losses of elements during milling and polishing. Concerns are raised due to the high and unwanted metal ac- cumulation in wheat and buckwheat. The data indicate that both of these buckwheat species accumulate less metal contaminants when compared to wheat.
References
Adriano, D.C., 2001. Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals. Springer-Verlag, New York, pp. 867.
Baker, A.J.M, 1981. Accumulators and excluders – strategies in the response of plants to heavy metals. Journal of Plant Nutrition, 3, 643–654. DOI: https://doi.org/10.1080/01904168109362867
Baker, A.J.M., Reeves, R.D., Hajar, A.S.M., 1994. Heavy metal accumulation and tolerance in British population of the metallophyte Thlaspi caerulescens J. & C. Presl (Brassicaceae) New Phytologist, 127, 61–68. DOI: https://doi.org/10.1111/j.1469-8137.1994.tb04259.x
Cakmak, I., 2002. Plant nutrition research: Priorities to meet human needs for food in sustainable ways. Plant and Soil, 247, 3–24. DOI: https://doi.org/10.1007/978-94-017-2789-1_1
Cakmak, I., Pfeiffer, W.H., McClafferty, B., 2010. Biofortification of durum wheat with zinc and iron. Cereal Chemistry, 87, 10–20. DOI: https://doi.org/10.1094/CCHEM-87-1-0010
Cubadda, F., Raggi, A., Marconi, E., 2005. Effects of processing on five selected metals in the durum wheat food chain. Microchemical Journal, 79, 97–102. DOI: https://doi.org/10.1016/j.microc.2004.06.011
Czerniejewski, C.P., Shank, C.W., Bechtel, W.G., Bradley, W.B., 1964. The minerals of wheat, flour and bread. Cereal Chemistry, 41, 65–72.
Grubinger, V., Ross, D., 2011. Interpreting the results of soil tests for heavy metals. Cooperative Extension work, USDA and University of Vermont, Berlington, 4 pp.
Hemery Y., Lullien-Pellerin, V., Rouau, X., Abecassis, J., Samson, M.-F., Aman, P., von Reding, W., Spoerndli, C., Barron, C., 2009. Biochemical markers: Efficient tools for the assessment of wheat grain tissue proportions in milling fractions. Journal of Cereal Science, 49, 55–64. DOI: https://doi.org/10.1016/j.jcs.2008.07.006
Hunt, J.R., 2003. Bioavailability of iron, zinc, and other trace minerals from vegetarian diets. The American Journal of Clinical Nutrition, 78, 633S–639S. DOI: https://doi.org/10.1093/ajcn/78.3.633S
Ikeda, S., Yamashita, Y., Kreft, I., 2000. Essential mineral composition of buckwheat flour fractions. Fagopyrum, 17, 57–61.
Ikeda, S., Yamashita, Y., Tomura, K., Kreft, I., 2006. Nutritional comparison in mineral characteristics between buckwheat and cereals. Fagopyrum, 23, 61–65.
Kreft, I., Jost, M., Skrabanja, V., 1998. Genetic basis of wheat ideotype for special blended bread. Proc. 9th International Wheat Genetics Symposium, Saskatoon, 4, pp. 184–186.
Lombi, E., Smith, E., Hansen, T.H., Paterson, D., de Jonge, M.D., Howard, D.L., Persson, D.P., Husted, S., Ryan, C., Schjoering, J.K., 2011. Megapixel imaging of (macro)nutrients in mature barley grains. Journal of Experimental Botany, 62, 273–282. DOI: https://doi.org/10.1093/jxb/erq270
Marschner, H., 1995. Mineral Nutrition of Higher Plants. Academic Press, London, UK.
Marx, E.S., Hart, J., Stevens, R.G., 1999. Soil Test Interpretation Guide EC 1478. Oregon State Uni- versity extension service, 8 pp.
Mazzolini, A.P., Pallaghy, C.K., Legge, G.J.F. 1985. Quantitative microanalysis of Mn, Zn and other elements in mature wheat seed. New Phytologist, 100, 483–509. DOI: https://doi.org/10.1111/j.1469-8137.1985.tb02796.x
McKevith, B., 2004. Nutritional aspects of cereal. Final report to the Home Grown Cereal Authority. British Nutrition Foundation, pp 62. http://www.hgca.com/publications/documents/cereals.pdf (27. 7. 2012)
Mensch, M., Lepp, N., Bert, V., Schwitzguébel, J.-P., Gawronski, S.W., Schröder, P., Vangronsveld, J., 2010. Successes and limitations of phytotechnologies at field scale: outcomes, assessment and outlook from COST Action 859. Journal of Soils and Sediments, 10, 1039–1070. DOI: https://doi.org/10.1007/s11368-010-0190-x
Mihelič, R., Čop, J., Jakše, M., Štampar, F., Majer, D., Tojnko, S., Vršič, S., 2010. Smernice za stro- kovno utemeljeno gnojenje. Ministrstvo za kmetijstvo, gozdarstvo in prehrano, Ljubljana, 185 pp.
Moreno, J.L., Hernández, C.G., Pascual, J.A.,1996. Transference of heavy metals from a calcareous soil amended with sewage–sludge compost to barley plants. Bioresource Technology, 55, 251–258. DOI: https://doi.org/10.1016/0960-8524(96)00009-0
Nečemer, M., Kump, P., Ščančar, J., Jaćimović R., Simčič, J., Pelicon, P, Budnar, M, Jeran, Z., Pongrac, P., Regvar, M., Vogel-Mikuš, K., 2008. Application of X-ray fluorescence analytical techniques in phytoremediation and plant biology studies. Spectrochimica Acta Part B: Atomic Spectroscopy, 63, 1240–1247. DOI: https://doi.org/10.1016/j.sab.2008.07.006
NSF/ANSI 173, 2003. American National Standard for Nutritional/Dietary Supplements 173 (NSF international), Metal contaminant acceptance levels, 21 pp.
Olsen, S.R., Sommers, L.E. 1982. Phosphorus. In: A.L. Page, R.H. Miller (Eds). Methods of Soil Analysis. Part 2. 2nd ed. Agronomy Monograph 9, ASA and SSSA, Madison, WI, pp. 403–430. DOI: https://doi.org/10.2134/agronmonogr9.2.2ed.c24
Pongrac, P., Vogel-Mikuš, K., Regvar, M., Vavpetič, P., Pelicon, P., Kreft, I., 2011. Improved lateral discrimination in screening the elemental composition of buckwheat grain by micro-PIXE. Journal of Agricultural and Food Chemistry, 59, 1275–1280. DOI: https://doi.org/10.1021/jf103150d
Regvar, M., Eichert, D., Kaulich, B., Gianoncelli, A., Pongrac, P., Vogel-Mikuš, K., Kreft, I., 2011. New insights into globoids of protein storage vacuoles in wheat aleurone using synchrotron soft X-ray microscopy. Journal of Experimental Botany, 62, 3929–3939. DOI: https://doi.org/10.1093/jxb/err090
Schwenke, H., Knoth, J., 1993. Total reflection XRF. In: Van Grieken RE, Markowicz AA (eds) Hand- book of X-Ray Spectronomy. Marcell Dekker, New York, pp 453–490.
Tyler, G., Zohlen, A., 1998. Plant seeds as mineral nutrient resource for seedlings – a comparison from calcareous and silicate soils. Annals of Botany, 81, 455–459. DOI: https://doi.org/10.1006/anbo.1997.0581
Ur. list RS, 68/1996. Decree on limit values, alert thresholds and critical levels of dangerous substances into the soil, p 5773.
US EPA, 2002. Supplemental guidance for developing soil screening levels for superfund sites. Office of Solid Waste and Emergency Response, Washington, D.C. http://www.epa.gov/superfund/health/ conmedia/soil/index.htm (28. 8. 2012)
USDA DRI Dietary Reference Intakes, 2004: Food and Nutrition Board, Institute of Medicine, USDA, National Agricultural Library. http://fnic.nal.usda.gov/dietary-guidance/dietary-reference-intakes/ dri-tables (28. 8. 2012).
Vogel-Mikuš, K., Pelicon, P., Vavpetič, P., Kreft, I., Regvar, M., 2009. Elemental analysis of edible grains by micro-PIXE: Common buckwheat case study. Nuclear Instruments and Methods in Physics Research B, 267, 2884–2889. DOI: https://doi.org/10.1016/j.nimb.2009.06.104
Vogel-Mikuš, K., Kump, P., Nečemer, M., Pelicon, P., Arčon, I., Pongrac, P., Povh, B., Regvar, M., 2010. Quantitative analyses of trace elements in environmental samples: options and (im)possibi- lities. In: Sherameti I., Varma A. (eds.): Soil heavy metals. Soil Biology, Berlin, Springer-Verlag, 19, 113–138. DOI: https://doi.org/10.1007/978-3-642-02436-8_6
Wang, S., Nan, Z., Liu, X., Li, Y., Qin, S., Ding, H., 2009. Accumulation and bioavailability of copper and nickel in wheat plants grown in contaminated soils from the oasis, northwest China. Geoderma, 152, 290–295. DOI: https://doi.org/10.1016/j.geoderma.2009.06.012
Waters, B.M., Sankaran, R.P., 2011. Moving micronutrients from the soil to the seeds: Genes and physiological processes from a biofortification perspective. Plant Science, 180, 562–574. DOI: https://doi.org/10.1016/j.plantsci.2010.12.003
White, P.J., Broadley, M.R., 2005. Biofortifying crops with essential mineral elements. Trends in Plant Science, 10, 586–592. DOI: https://doi.org/10.1016/j.tplants.2005.10.001
WHO World Health Organisation, 1982. International programme on chemical safety. Environmental health criteria 24. Titanium. Geneva., 68 pp
Zhao, F.J., Su, Y.H., Dunham, S.J., Rakszegi, M., Bedo, Z., McGrath, S.P., Shewry, P.R., 2009. Variation in mineral micronutrient concentrations in grain of wheat of diverse origin. Journal of Cereal Science, 49, 290–295. DOI: https://doi.org/10.1016/j.jcs.2008.11.007
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.