The effect of different compounds of selenium and iodine on selected biochemical and physiological characteristics in common buckwheat and pumpkin sprouts

Authors

  • Mateja Germ
  • Nina Kacjan Maršić
  • Janja Turk
  • Marjetka Pirc
  • Aleksandra Golob
  • Ana Jerše
  • Ana Koflič
  • Helena Šircelj
  • Vekoslava Stibilj

DOI:

https://doi.org/10.14720/abs.58.1.15599

Keywords:

sprouts, common buckwheat, pumpkins, selenium, iodine

Abstract

There is little data about possible interactions between selenium and iodine on plants. Se is essential for I metabolism in the thyroid in mammals. Thus, it is of great importance to carry out the research with simultaneous application of both elements in plant cultivation that are used for human consumption. Seeds of common buckwheat and pumpkins were soaked in solutions: 10 mgSe/L in the form of selenite or selenate, and 1000 mgI/L in the form of iodide or iodate and their combinations. The content of chlorophyll a and b, and carotenoids were measured. Further, the measurements of fluorescence of chlorophyll a were performed. Control
buckwheat sprouts and sprouts from seeds soaked in Se(VI) and Se(VI)+I(-1), had the lowest and similar amount of chlorophyll a and carotenoids. There was little effect of different treatments on potential photochemical efficiency of photosystem II (PS II)
in common buckwheat sprouts. In pumpkin sprouts neither of treatment affected the amount of photosynthetic pigments, as well as potential photochemical efficiency of (PS II) which was around 0.8.

References

Akbulut, M., Çakır, S., 2010. The effects of Se phytotoxicity on the antioxidant systems of leaf tissues in barley (Hordeum vulgare L.) seedlings. Plant Physiol. Bioch., 48, 160–166. DOI: https://doi.org/10.1016/j.plaphy.2009.11.001

Blasco, B., Rios, J.J., Cervilla, L.M., Sanchez-Rodriguez, E., Rubio-Wilhelmi, M.M., Rosales, M.A., Ruiz, J.M., Romero, L., 2010. Photorespiration Process and Nitrogen Metabolism in Lettuce Plants (Lactuca sativa L.): Induced Changes in Response to Iodine Biofortification. J. Plant Growth DOI: https://doi.org/10.1007/s00344-010-9159-7

Regul., 29, 477–486.

Blasco, B., Rios, J.J., Leyva, R., Melgarejo, R., Constan-Aguilar, C., Sanchez-Rodriguez, E., RubioWilhelmi, M.M., Romero, L., Ruiz, J. M., 2011. Photosynthesis and metabolism of sugars from lettuce plants (Lactuca sativa L. var. longifolia) subjected to biofortification with iodine. Plant DOI: https://doi.org/10.1007/s10725-011-9583-0

Growth Regul., 65, 137–143.

Breznik, B., Germ, M., Gaberščik, A., Kreft, I., 2005. Combined effects of elevated UV-B radiation and addition of selenium on common (Fagopyrum esculentum Moench) and tartary (Fagopyrum tataricum (L.) Gaertn.) buckwheat. Photosynthetica, 43 (4), 583–589. DOI: https://doi.org/10.1007/s11099-005-0091-1

Dai, J., Zhu, Y., Huang, Y., Zhang, M., Song, J., 2006. Availability of iodide and iodate to spinach (Spinacia oleracea L.) in relation to total iodine in soil solution. Plant Soil, 289, 301–308. DOI: https://doi.org/10.1007/s11104-006-9139-7

Fuge, R., 2005. Soils and iodine deficiency. Essentials of Medical Geology, 417–433. DOI: https://doi.org/10.1007/978-94-007-4375-5_17

Germ, M., Kreft, I., Osvald, J., 2005. Influence of UV-B exclusion and selenium treatment on photochemical efficiency of photosystem II, yield and respiratory potential in pumpkins (Cucurbita pepo L.). Plant Physiol. Bioch. (Paris), 43, 445–448. DOI: https://doi.org/10.1016/j.plaphy.2005.03.004

Germ, M., Stibilj, V., Osvald, J., Kreft, I., 2007. Effect of selenium foliar application on chicory (Cichorium intybus L.). J. Agric. Food Chem., 55 (3), 795–798. DOI: https://doi.org/10.1021/jf0629888

Hartikainen, H., Xue, T., Piironen, V., 2000. Selenium as an anti-oxidant and pro-oxidant in ryegrass. Kluwer Academic Publishers. Printed in the Netherlands, Plant Soil 225, 193–200. DOI: https://doi.org/10.1023/A:1026512921026

Hawrylak-Nowak, B., 2008a. Enhanced selenium content in sweet basil (Ocimum basilicum L.) by foliar fertilization. Vegetable Crops Research Bulletin, 69, 63–72. DOI: https://doi.org/10.2478/v10032-008-0021-4

Hawrylak-Nowak, B., 2008b. Changes in Anthocyanin Content as Indicator of Maize Sensitivity to Selenium. J. Plant Nutrit., 31, 1232–1242. DOI: https://doi.org/10.1080/01904160802134962

Hawrylak-Nowak, B., 2013. Comparative effects of selenite and selenate on growth and selenium accumulation in lettuce plants under hydroponic conditions. Plant Growth Regul., 70, 149–157. DOI: https://doi.org/10.1007/s10725-013-9788-5

Ikeda, S., Yamashita, Y., Tomura, K., Kreft, I., 2006. Nutritional comparison in mineral characteristics between buckwheat and cereals. Fagopyrum, 23, 61–65.

Kim, S.L., Kim, S.K., Park, C.H., 2004. Introduction and nutritional evaluation of buckwheat sprouts as a new vegetable. Food Res. Int., 37, 319–327. DOI: https://doi.org/10.1016/j.foodres.2003.12.008

Kreft, I., Stibilj, V., Trkov, Z., 2002. Iodine and selenium contents in pumpkin (Cucurbita pepo L.) oil and oil-cake. European Food Research and Technology A. Zeitschrift für LebensmittelUntersuchung und -Forschung, 215, 279–281. DOI: https://doi.org/10.1007/s00217-002-0563-5

Landini, M., Gonzali, S., Perata, P., 2011. Iodine biofortification in tomato. J. Plant Nutr. Soil Sci., 174, 480–486. DOI: https://doi.org/10.1002/jpln.201000395

Lichtenthaler, H.K., Buschmann, C., 2001a. Chlorophylls and carotenoids - Measurement and characterisation by UV-VIS. In: Current Protocols in Food Analytical Chemistry. John Wiley & Sons, Madison, pp. F4.3.1-F4.3.8.

Lichtenthaler, H.K., Buschmann, C., 2001b. Extraction of photosynthetic tissues: Chlorophylls and carotenoids. In: Current Protocols in Food Analytical Chemistry. John Wiley & Sons, Madison, pp. F4.2.1-F4.2.6. DOI: https://doi.org/10.1002/0471142913.faf0403s01

Mechora, Š., Stibilj, V., Radešček, T., Gaberščik, A., Germ, M., 2011. Impact of Se (VI) fertilization on Se concentration in different parts of red cabbage plants. International Journal of Food, Agriculture & Environment – JFAE, 9 (2), 357–361.

Mechora, Š., Stibilj, V., Kreft, I., Germ, M., 2014.The physiology and biochemical tolerance of cabbage to Se (VI) addition to the soil and by foliar spraying. J. Plant Nutr., 37 (13), 2157–2169. DOI: https://doi.org/10.1080/01904167.2014.920375

Schreiber, U., Bilger, W., Neubauer, C., 1995. Chlorophyll fluorescence as a nonintrusive Indicator for Rapid Assessment of in Vivo Photosynthesis. In: Schulze, E.D., Caldwell, M.M., (eds.): Ecophysiology of Photosynthesis, Springer-Verlag, Berlin, Heidelberg, New York, pp. 49–69. DOI: https://doi.org/10.1007/978-3-642-79354-7_3

Smoleń, S., Rożek, S., Ledwożyw-Smoleń, I., Strzetelski, P., 2011. Preliminary evaluation of the influence of soil fertilization and foliar nutrition with iodine on the efficiency of iodine biofortification and chemical composition of lettuce. J. Elem., 613–622. DOI: https://doi.org/10.5601/jelem.2011.16.4.10

Smoleń, S., Kowalska, I., Sady, W., 2014. Assessment of biofortification with iodine and selenium of lettuce cultivated in the NFT hydroponic system. Sci. Hortic., 166, 9–16. DOI: https://doi.org/10.1016/j.scienta.2013.11.011

Stibilj, V., Kreft, I., Smrkolj, P., Osvald, J., 2004. Enhanced selenium content in buckwheat (Fagopyrum esculentum Moench) and pumpkin (Cucurbita pepo L.) seeds by foliar fertilisation. European Food Research and Technology A. Zeitschrift für Lebensmittel-Untersuchung und -Forschung, 219, 142–144. DOI: https://doi.org/10.1007/s00217-004-0927-0

Strzetelski, P., Smoleń, S., Rożek, S., Sady, W., 2010. The effect of diverse iodine fertilization on nitrate accumulation and content of selected compounds in radish plants (Raphanus sativus L.). Acta Sci. Pol., Hortorum Cultus 9 (2), 65–73. Tadina, N., Germ, M., Kreft, I., Breznik, B., Gaberščik, A., 2007. Effects of water deficit and selenium on common buckwheat (Fagopyrum esculentum Moench.) plants. Photosynthetica, 45 (3), 472–476. DOI: https://doi.org/10.1007/s11099-007-0080-7

Terry, N., Zayed, A.M., De Souza, M.P., Tarun, A.S., 2000. Selenium in higher plants. Ann. Rev. Plant Physiol. Plant Mol. Biol., 51, 401–432. DOI: https://doi.org/10.1146/annurev.arplant.51.1.401

Valkama, E., Kivimäenpää, H., Hartikainen, H., Wulff, A., 2003. The combined effects of enhanced UV-B radiation and selenium on growth, chlorophyll fluorescence and ultrastructure in strawberry (Fragaria x ananassa) and barley (Hordeum vulgare) treated in the field. Agr. Forest Meteorol., 120, 267–278. DOI: https://doi.org/10.1016/j.agrformet.2003.08.021

Voogt, W., Holwerda, H.T., Khodabaks, R., 2010. Biofortification of lettuce (Lactuca sativa L.) with iodine: the effect of iodine form and concentration in the nutrient solution on growth, development and iodine uptake of lettuce grown in water culture. J. Sci. Food Agric, 90, 906–913. DOI: https://doi.org/10.1002/jsfa.3902

Weng, H., Hong, C., Xia, T., Bao, L., Liu, H., Li, D., 2013. Iodine biofortification of vegetable plants – an innovative method for iodine supplementation. Chinese Science Bulletin, 58, 17, 2066–2072. DOI: https://doi.org/10.1007/s11434-013-5709-2

White, P.J., Bowen, H.C., Parmaguru, P., Fritz, M., Spracklen, W.P., Spiby, R.E., Meacham, M.C., Mead, A., Harriman, M., Trueman, L.J., Smith, B. M., Thomas, B., Broadley, M.R., 2004. Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J. Exp. Bot., 55, Sulphur DOI: https://doi.org/10.1093/jxb/erh192

Metabolism in Plants Special Issue, pp. 1927–1937.

Xue, T., Hartikainen, H., Piironen, V., 2001. Antioxidative and growth-promoting effect of selenium in senescing lettuce. Plant Soil, 237, 55–61. DOI: https://doi.org/10.1023/A:1013369804867

Yoon, Y.-H., Lee, J-G, Jeong, J.-C., Jang, D.-C., Park, C.-S., 2009. The effect of temperature and light conditions on growth and antioxidantcontents of Tartary buckwheat sprout. In: Development and utilization of buckwheat sprouts as medicinal natural products, Park, C.H., Kreft, I., (eds.): Proceedings of the International Symposium on buckwheat Sprouts. Bongpyoung, Korea, pp. 54–59.

Zhu, Y.-G., Huang, Y.-Z., Hu, Y., Liu, Y.-X., 2003. Iodine uptake by spinach (Spinacia oleracea L.) plants grown in solution culture: effects of iodine species and solution concentrations. Environ. Int., 29, 33–37. DOI: https://doi.org/10.1016/S0160-4120(02)00129-0

Zhu, Y.-G., Huang, Y.-Z., Hu, Y., Liu, Y., Christie, P., 2004. Interactions between selenium and iodine uptake by spinach (Spinacia oleracea L.) in solution culture. Plant Soil, 261, 99–105. DOI: https://doi.org/10.1023/B:PLSO.0000035539.58054.e1

Zia, H.M., Watts, J.M., Gardner, A., Chenery, R.S., 2014. Iodine status of soils, grain crops, and irrigation waters in Pakistan. Environ. Earth Sci., 73 (12), 7995–8008. DOI: https://doi.org/10.1007/s12665-014-3952-8

Zimmermann, M.B., Köhrle, J., 2002.The impact of iron and selenium deficiencies on iodine and thyroid metabolism: biochemistry and relevance to public health. Thyroid, 12 (10), 867–78. DOI: https://doi.org/10.1089/105072502761016494

Downloads

Published

01.07.2015

Issue

Section

Original Research Paper

How to Cite

Germ, M., Kacjan Maršić, N., Turk, J., Pirc, M., Golob, A., Jerše, A., Koflič, A., Šircelj, H., & Stibilj, V. (2015). The effect of different compounds of selenium and iodine on selected biochemical and physiological characteristics in common buckwheat and pumpkin sprouts. Acta Biologica Slovenica, 58(1), 35-44. https://doi.org/10.14720/abs.58.1.15599

Most read articles by the same author(s)

1 2 > >>