Relationship of nuclear genome size, cell volume and nuclei volume in endosperm of Sorghum bicolor
DOI:
https://doi.org/10.14720/abs.58.2.15607Keywords:
cell volume, endopolyploidy, endoreplication, endosperm, nuclear genome sizeAbstract
Endosperm cells of Sorghum bicolor undergo several rounds of endoreplication during seed development, resulting in somatic endopolyploidy with cells containing 3 C to 96 C nuclei (1 C represents the amount of DNA in an unreplicated haploid genome). Cells with higher DNA content are larger and contain larger nuclei. The function of large endosperm cells in Sorghum bicolor is storage of starch that will be used in germination. We analysed the ratios of nuclear genome size and volume of nuclei and cells to determine if karyoplasmic ratio is constant in cells of different endopolyploidy levels. Interestingly, the volume of cells and nuclei increases more than can be expected from the increase in genome size alone. Instead, a constant ratio was observed between genome size and surface of cells and nuclei. However, an isometric relationship was found between volume of nuclei and volume of cells, indicating that karyoplasmic ratio is constant in sense of dimensions of cellular compartments, rather than with nuclear genome size alone.
References
Barlow, P.W., 1978. Endopolyploidy: towards an understanding of its biological significance. Acta Biotheoretica, 27, 1-18. DOI: https://doi.org/10.1007/BF00048400
Barow, M., 2006. Endopolyploidy in seed plants. Bioessays, 28, 271-281. DOI: https://doi.org/10.1002/bies.20371
Barow, M., Meister, A., 2003. Endopolyploidy in higher plants is correlated to systematics, life strategy and genome size. Plant Cell and Environment, 26, 571-584. DOI: https://doi.org/10.1046/j.1365-3040.2003.00988.x
Bourdon, M., Pirrello, J., Cheniclet, C., Coriton, O., Bourge, M., Brown, S., Moïse, A., Peypelut, M., Rouyère, V., Renaudin, J.P., Chevalier, C., Frangne, N., 2012. Evidence for karyoplasmic homeostasis during endoreduplication and a ploidy-dependent increase in gene transcription during tomato fruit growth. Development, 139, 3817-3826. DOI: https://doi.org/10.1242/dev.084053
Cavalier-Smith, T., 2005. Economy, speed and size matter: evolutionary forces driving nuclear genome miniaturization and expansion. Annals of Botany, 95, 147-175. DOI: https://doi.org/10.1093/aob/mci010
Cookson, S.J., Radziejwoski, A., Granier, C., 2006. Cell and leaf size plasticity in Arabidopsis: what is the role of endoreduplication? Plant, Cell & Environment, 29, 1273-1283. DOI: https://doi.org/10.1111/j.1365-3040.2006.01506.x
Dermastia, M., Kladnik, A., Koce, J.D., Chourey, P.S., 2009. A cellular study of teosinte Zea mays subsp. parviglumis (Poaceae) caryopsis development showing several processes conserved in maize. American Journal of Botany, 96, 1798-1807. DOI: https://doi.org/10.3732/ajb.0900059
Dolenc Koce, J., Vilhar, B., Bohanec, B., Dermastia, M., 2003. Genome size of Adriatic seagrasses. Aquatic Botany, 77, 17-25. DOI: https://doi.org/10.1016/S0304-3770(03)00072-X
Edgar, B.A., Zielke, N., Gutierrez, C., 2014. Endocycles: a recurrent evolutionary innovation for post-mitotic cell growth. Nature Reviews Molecular Cell Biology, 15, 197-210. DOI: https://doi.org/10.1038/nrm3756
Feulgen, R., Rossenbeck, H., 1924. Mikroskopisch-chemischer Nachweis einer Nucleinsäure von Typus der Thymonucleinsäure und die darauf beruhende elective Färbung von Zellkernen in mikroskopischen Präparaten. Hoppe-Seyler’s Zeitschrift fur Physiologische Chemie, 135, 203-248. DOI: https://doi.org/10.1515/bchm2.1924.135.5-6.203
Jorgensen, P., Edgington, N.P., Schneider, B.L., Rupes, I., Tyers, M., Futcher, B., 2007. The size of the nucleus increases as yeast cells grow. Molecular Biology of the Cell, 18, 3523-3532. DOI: https://doi.org/10.1091/mbc.e06-10-0973
Joubès, J., Chevalier, C., 2000. Endoreduplication in higher plants. Plant Molecular Biology, 43, 735-745. DOI: https://doi.org/10.1023/A:1006446417196
Kladnik, A., Chourey, P.S., Pring, D.R., Dermastia, M., 2006. Development of the endosperm of Sorghum bicolor during the endoreduplication-associated growth phase. Journal of Cereal Science, 43, 209-215. DOI: https://doi.org/10.1016/j.jcs.2005.09.004
Kondorosi, E., Roudier, F., Gendreau, E., 2000. Plant cell-size control: growing by ploidy? Current Opinion in Plant Biology, 3, 488-492. DOI: https://doi.org/10.1016/S1369-5266(00)00118-7
Kowles, R.V., McMullen, M.D., Yerk, G., Phillips, R.L., Kraemer, S., Srienc, F., 1992. Endosperm mitotic activity and endoreduplication in maize affected by defective kernel mutations. Genome, 35, 68-77. DOI: https://doi.org/10.1139/g92-012
Orr-Weaver, T.L., 2015. When bigger is better: the role of polyploidy in organogenesis. Trends in Genetics, 31, 307-315. DOI: https://doi.org/10.1016/j.tig.2015.03.011
R Core Team, 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
Sinnott, E.W., Trombetta, V.V., 1936. The cytonuclear ratio in plant cells. American Journal of Botany, 23, 602-606. DOI: https://doi.org/10.1002/j.1537-2197.1936.tb09032.x
Sugimoto-Shirasu, K., Roberts, K., 2003. ‘Big it up’: endoreduplication and cell-size control in plants. Current Opinion in Plant Biology, 6, 544-553. DOI: https://doi.org/10.1016/j.pbi.2003.09.009
Vilhar, B., Kladnik, A., Blejec, A., Chourey, P.S., Dermastia, M., 2002. Cytometrical evidence that the loss of seed weight in the miniature1 seed mutant of maize is associated with reduced mitotic activity in the developing endosperm. Plant Physiology, 129, 23-30. DOI: https://doi.org/10.1104/pp.001826
Wilson, E.B., 1925. The Cell in Development and Heredity. New York: Macmillan.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.