Broadleaf and conifer tree responses to long-term enhanced UV-B radiation in outdoor experiments: a review

Authors

  • Tadeja Trošt Sedej

DOI:

https://doi.org/10.14720/abs.57.2.15619

Keywords:

broadleaf tree, conifer tree, UV-B radiation, long-term outdoor experiment

Abstract

Trees as a perennial growth form require time to evolve the complex response to enhanced ultraviolet-B radiation (UV-B), and this might lead to slow but important changes in forest ecosystem structure and function. Long-term outdoor experiments on trees however are few in number. The available published results suggest that broadleaf and conifer trees may show different response strategies to enhanced UV-Bradiation. The long-term outdoor experiments indicate species- and season-specific differential responses in tree secondary metabolism, photosynthesis, water relations, and growth and development.

References

Antonelli, F., Bussotti, F., Grifoni, D., Grossoni, P., Mori, B., Tani, C., Zipoli, G., 1998. Oak (Quercus robur L.) seedling responses to a realistic increase in UV-B radiation under open space conditions. Chemosphere, 36, 4-5, 841-845. DOI: https://doi.org/10.1016/S0045-6535(97)10135-7

Aphalo P.J., Albert A., Björn L.-O., McLeod A., Robson T.M., Rosenqvist, E. (Eds.), 2012. Beyond the Visible: A handbook of best practice in plant UV photobiology. COST Action FA0906 UV4growth. Helsinki: University of Helsinki, Division of Plant Biology, 176 pp. DOI: https://doi.org/10.31885/9789521083631

Basioumy P.M., Biggs, R.H., 1975. Photosynthetic and carbonic anhydrase activities in Zn-deficient peach seedlings exposed to UV-B radiation. Impacts of climate change on the biosphere, CIAP Monograph 5, Part 1 (App. B), Department of Transportation, Washington, 55-75.

Bassman, J.H., Edwards, G.E., Robberecht, R., 2003. Photosynthesis and growth in seedlings of five forest tree species with contrasting leaf anatomy subjected to supplemental UV-B radiation. Forest Sci, 49, 176-187.

Björn, L.O., Callaghan, T.V., Gehrke, C., Johanson, U., Sonesson M., 1999. Ozone depletion, ultra- violet radiation and plant life. Chemosphere, 1, 449–454. DOI: https://doi.org/10.1016/S1465-9972(99)00038-0

Bogenrieder, A., Klein, R., 1982. Does solar UV influence the competitive relationship in higher plants? In: The role of solar ultraviolet radiation in marine ecosystems. J. Calkins (Ed.), Plenum Press, New York, 641–649. DOI: https://doi.org/10.1007/978-1-4684-8133-4_55

Bornman, J.F., 1989. Target sites of UV-B radiation in photosynthesis of higher plants. J Photoch Photobio, 4, 145-158.

Brown, B.A., C., Cloix, G.H., Jiang, E., Kaiserli, P., Herzyk, D.J., Kliebenstein, G.I., Jenkins, 2005. A UV-B-specific signalling component orchestrates plant UV protection. Proc. Nat. Acad Sci U S A. 102 (50):18225-30. DOI: https://doi.org/10.1073/pnas.0507187102

Caldwell, M.M., Björn, L.O., Bornman. J.F., Flint, S.D., Kulandaivelu, G., Teramura, A.H., Tevini, M., 1998. Effects of increased solar ultraviolet radiation on terrestrial ecosystems. J Photochem Photobiol B: Biology 46, 40–52. DOI: https://doi.org/10.1016/S1011-1344(98)00184-5

Chalker-Scott, L., Scott, J.D., 2004. Elevated ultraviolet-B radiation induces cross-protection to cold in leaves of Rhododendron under field conditions. Photochem Photobiol, 79, 199-204. DOI: https://doi.org/10.1562/0031-8655(2004)079<0199:EURICT>2.0.CO;2

Day, T.A., 1993. Relating UV-B radiation screening effectiveness of foliage to absorbing-compound concentration and anatomical characteristics in a diverse group of plants. Oecologia, 95, 542-550. DOI: https://doi.org/10.1007/BF00317439

Day, T.A., Vogelmann, T.C., DeLucia, E.H., 1992. Are some plant life forms more effective than others in screening out ultra violet-B radiation? Oecologia Heidelberg, 92, 513-519. DOI: https://doi.org/10.1007/BF00317843

DeLucia, E.H., Day, T.A., Vogelman, T.C., 1992. UV-B and visible light penetration into needles of two species of subalpine conifers during foliar development. Plant Cell Environ, 15, 921-929. DOI: https://doi.org/10.1111/j.1365-3040.1992.tb01024.x

Favory, J.J, A. Stec, H. Gruber, L. Rizzini, A. Oravecz, M. Funk, A. Albert, C. Cloix, G.I. Jenkins, E.J. Oakeley, H.K. Seidlitz, F. Nagy, R. Ulm, 2009. Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. Embo J, 28, 591–601. Fischbach, R.J., Kossmann, B., Panten, H., Steinbrecher, R., Heller, W., Seidlitz, H.K., Sandermann, H., Hertkorn, N., Schnitzler, J.P., 1999. Seasonal accumulation of ultraviolet-B screening pigments in needles of Norway spruce (Picea abies (L.)Karst). Plant Cell Environ, 22, 27-37. DOI: https://doi.org/10.1038/emboj.2009.4

Hoque, E., Remus, G., 1999. Natural UV-screening mechanisms of Norway spruce (Picea abies [L.] Karst.) needles. Photochem Photobiol 69, 177-192. DOI: https://doi.org/10.1111/j.1751-1097.1999.tb03272.x

Jordan, B.R., 1996. The effects of ultraviolet-B radiation on plants: a molecular perspective. Adv Bot Res, 22, 97-162. DOI: https://doi.org/10.1016/S0065-2296(08)60057-9

Julkunen-Tiitto, R., Häggman, H., Aphalo, P.J., Lavola, A., Tegelberg, R., Veteli, T., 2005. Growth and defense in deciduous trees and shrubs under UV-B. Env. Pollution 137(3), 404-414. DOI: https://doi.org/10.1016/j.envpol.2005.01.050

Karabourniotis, G., J.F. Bornman, V. Liakoura, 1999.Different leaf surface characteristics of three grape cultivars affect leaf optical properties as measured with fibre optics: possible implication in stress tolerance. Austr J Plant Physiol 26(1) 47-53. DOI: https://doi.org/10.1071/PP98052

Kataria, S., Jajoo, A., Guruprasad, K., 2014. Impact of increasing Ultraviolet-B (UV-B) radiation on photosynthetic processes. J Photochem Photobiol B, 137:55-66. DOI: https://doi.org/10.1016/j.jphotobiol.2014.02.004

Keiller, D.R., Holmes M.G., 2001. Effects of long-term exposure to elevated UV-B radiation on the pho- tosynthetic performance of five broad-leaved tree species. Photosynthesis Research, 67, 229–240. Keski-Saari, S., Julkunen-Tiitto, R., 2003. Early developmental responses of mountain birch (Betula pubescens subsp. czerepanovii) seedlings to different concentrations of phosphorus. Tree Physiology 23, 1201–1208. DOI: https://doi.org/10.1093/treephys/23.17.1201

Kinnunen, H., Huttunen, S., Laakso, K., 2001. UV-absorbing compounds and waxes of Scots pine needles during a third growing season of supplemental UV-B. Environ Pollut, 112, 215-220. DOI: https://doi.org/10.1016/S0269-7491(00)00113-5

Kirchgessner, H.D., Reichert, K., Hauff, K., Steinbrecher, R., Schnitzler, J.P., Pfundel, E.E., 2003. Light and temperature, but not UV radiation, affect chlorophylls and carotenoids in Norway spruce needles (Picea abies (L.) Karst.). Plant Cell Environ, 26, 1169-1179. DOI: https://doi.org/10.1046/j.1365-3040.2003.01043.x

Kostina, E., Wulff, A., Julkunen-Tiitto,R., 2001. Growth, structure, stomatal responses and secondary metabolites of birch seedlings (Betula pendula) under elevated UV-B radiation in the field. Trees, 15, 483-491. DOI: https://doi.org/10.1007/s00468-001-0129-3

Laakso, K., Huttunen, S., 1998. Effects of the ultraviolet-B radiation (UV-B) on conifers: a review. Environ Pollut, 99, 319-328. DOI: https://doi.org/10.1016/S0269-7491(98)00022-0

Laakso, K., Kinnunen, H., Huttunen, S., 1996. Effects of ultraviolet radiation on the growth of Scots pine and Norway spruce. 5th Meeting of Finnish Plant Scientists, Kuopio, Finland. Kuopio Uni- versity Publications, C45, 58-60.

Laakso, K., Sullivan, J.H., Huttunen, S., 2000. The effects of UV-B radiation on epidermal anatomy in loblolly pine (Pinus taeda L.) and Scots pine (Pinus sylvestris L.) Plant Cell Environ, 23, 461-472. DOI: https://doi.org/10.1046/j.1365-3040.2000.00566.x

Láposi, R., Veresa, S., Lakatosb, G., Oláha, V., Fieldsendc, A., Mészárosa, I., 2009. Responses of leaf traits of European beech (Fagus sylvatica L.) saplings to supplemental UV-B radiation and UV-B exclusion. Agricultiral and Forest Meteorology, 149(5), 745-755. DOI: https://doi.org/10.1016/j.agrformet.2008.10.023

Lavola, A., Aphalo, P.J., Lahti, M., Julkunen-Tiitto, R., 2003. Nutrient availability and the effect of increasing UV-B radiation on secondary plant compounds in Scots pine. Environ Exp Bot, 49, 49-60. DOI: https://doi.org/10.1016/S0098-8472(02)00057-6

Li, F.-R., Peng , S.-L., Chen, B.-M., Hou, Y.-P., 2010. A meta-analysis of the responses of woody and herbaceous plants to elevated ultraviolet-B radiation. Acta Oecologica, 36, 1, 1-9. DOI: https://doi.org/10.1016/j.actao.2009.09.002

Madronich S., McKenzie R.L., Björn L.O., Caldwell M.M., 1998. Changes in biologically active UV radiation reaching the Earth´s surface. Environmental Effects on Ozone Depletion. United Nations Environment Programe, Ozone Secretariat: 1-27. DOI: https://doi.org/10.1016/S1011-1344(98)00182-1

Manetas, Y., Petropoulou, Y., Stamatakis, K., Nikolopoulos, D., Levizou, E., Psaras, G., Karabourniotis, G., 1997. Beneficial effects of enhanced UV-B radiation under field conditions: Improvement of needle water relations and survival capacity of Pinus pinea L seedlings during the dry Mediter- ranean summer. Plant Ecol, 128, 100-108. DOI: https://doi.org/10.1007/978-94-011-5718-6_9

Middleton, E.M., Teramura, A.H., 1993. The role of flavonol glycosides and carotenoids in protecting soybean from ultraviolet-B damage. Plant Physiol, 103, 741-752. DOI: https://doi.org/10.1104/pp.103.3.741

Mirecki R.M., Teramura A.H., 1984. Effects of ultraviolet-B irradiance on soybean 5. The dependence of plant-sensitivity on the photosynthetic photon flux-density during and after leaf expansion. Plant Physiol 74, 475-480. DOI: https://doi.org/10.1104/pp.74.3.475

Naidu, S.L., Sullivan, J.H., Teramura, A.H., DeLucia, E.H., 1993. The effects of ultraviolet-B radiation on photosynthesis of different aged needles in field-grown loblolly-pine. Tree Physiol, 12, 151-162. DOI: https://doi.org/10.1093/treephys/12.2.151

Nogués, S., D.J. Allen, J.I.L. Morison, Baker, N.R., 1999. Characterization of stomatal closure caused by ultraviolet-B radiation. J Plant Physiol, 121, 489–496. DOI: https://doi.org/10.1104/pp.121.2.489

Norway spruce (Picea abies (L.) Karst.) seedlings. Trees, 10, 172-176.

Nybakken, L., Hörkkä R, Julkunen-Tiitto R., 2012. Combined enhancements of temperature and UVB influence growth and phenolics in clones of the sexually dimorphic Salix myrsinifolia. Physiol Plant 145(4), 551-564. DOI: https://doi.org/10.1111/j.1399-3054.2011.01565.x

Petropoulou, Y., Kyparissis, A., Nikolopoulos, D., Manetas, Y., 1995. Enhanced UV-B radiation alleviates the adverse-effects of summer drought in 2 mediterranean pines under field conditions. Physiol Plantarum, 94, 37-44. DOI: https://doi.org/10.1034/j.1399-3054.1995.940106.x

Rizzini, L., J.-J. Favory, C. Cloix, D. Faggionato, A. O’Hara, E. Kaiserli, R. Baumeister, E. Schäfer, F. Nagy, G.I. Jenkins, Ulm, R., 2011. Perception of UV-B by the Arabidopsis UVR8 protein. Science, 332, 103–106. DOI: https://doi.org/10.1126/science.1200660

Robson, T.M., Klem, K., Urban O., Jansen M.A.K., 2014. Re-interpreting plant morphological re- sponses to UV-B radiation. Review. Plant Cell Environ DOI: 10.1111/pce.12374 DOI: https://doi.org/10.1111/pce.12374

Rozema, J., Bjorn, L.O., Bornman, J.F., Gaberščik, A., Hader, D.P., Trošt, T., Germ, M., Klisch, M., Groniger, A., Sinha, R.P., Lebert, M., He, Y.Y., Buffoni-Hall, R., de Bakker, N.V.J., van de Staaij, J., Meijkamp, B.B., 2002. The role of UV-B radiation in aquatic and terrestrial ecosystems - an experimental and functional analysis of the evolution of UV-absorbing compounds. J Photoch Photobio B, 66, 2-12. DOI: https://doi.org/10.1016/S1011-1344(01)00269-X

Sullivan, H.J., 2005. Possible impact of changes in UV-B radiation on North American tress and forests. Environ Pollut, 137, 380-389. DOI: https://doi.org/10.1016/j.envpol.2005.01.029

Sullivan, J.H., Gitz, D.C., Peek, M.S., McElrone, A.J., 2003. Response of three eastern tree species to supplemental UV-B radiation: leaf chemistry and gas exchange. Agr and Forest Meteor 120, 1-4. Sullivan, J.H., Howells, B.W., Ruhland, C.T., Day, T.A., 1996. Changes in leaf expansion and epidermal screening effectiveness in Liquidambar syraciflua and Pinus taeda in response to UV-B radiation. DOI: https://doi.org/10.1016/j.agrformet.2003.08.016

Physiol Plantarum, 98, 349-357.

Sullivan, J.H., Teramura, A.H., 1992. The effects of UV-B radiation on loblolly pine. 2. Growth of field-grown seedlings. Tree-Sruct Funct, 6, 115-120. DOI: https://doi.org/10.1007/BF00202426

Šprtová, M., Marek, M. V., Nedbal, L., Prášil, O., Kalina, J., 1999. Sesonal changes of photosynthetic assimilation of Norway spruce under the impact of enhanced UV-B radiation. Plant Sci. 142, 37-45. DOI: https://doi.org/10.1016/S0168-9452(98)00253-2

Šprtová, M., Špunda, V., Kalina, J., Marek M.V., 2003. Photosynthetic UV-B Response of Beech (Fagus sylvatica L.) Saplings. Photosynthetic, 41, 4, 533-543. DOI: https://doi.org/10.1023/B:PHOT.0000027517.80915.1b

Teramura, A.H., Sullivan, J.H., 1994. Effects of UV-B radiation on photosynthesis and growth of terrestrial plants. Photosynth Res, 39, 463-473. DOI: https://doi.org/10.1007/BF00014599

Tree Physiology, 22, 829-838.

Tevini, M., Teramura, A.H., 1989. UV-B effects on terrestrial plants. Photochem. Photobiol. 50, 479-487. DOI: https://doi.org/10.1111/j.1751-1097.1989.tb05552.x

Trošt Sedej, T, Dušan Rupar, 2013 Deciduous and evergreen tree responses to enhanced UV-B treatment during three years. Acta Biologica Slovenica 56, 2, 35–50.

Trošt Sedej, T., Gaberščik, A., 2008. The effects of enhanced UV-B radiation on physiological activity and growth of Norway spruce planted outdoors over 5 years. Trees, 2008, 22, 4, 423-435. DOI: https://doi.org/10.1007/s00468-007-0203-6

Turtola, S., Sallas, L., Holopainen, J.K., Julkunen-Tiitto, R., Kainulainen, P., 2006. Long term expo- sure to enhanced UV-B radiation has no significant effect on growth or secondary compounds of outdoor-grown Scots pine and Norway spruce seedlings. Environ Expl Bot, 56, 80-86. DOI: https://doi.org/10.1016/j.envpol.2005.12.025

Turunen, M., Latola K., 2005.UV-B radiation and acclimation in timberline plants. Environmental Pollution, 137, 3, 390-403. DOI: https://doi.org/10.1016/j.envpol.2005.01.030

Virjamo, V., Sutinen, S., Julkunen-Tiitto, R., 2014. Combined effect of elevated UVB, elevated tem- perature and fertilization on growth, needle structure and phytochemistry of young Norway spruce (Picea abies) seedlings. Global Change Biology 20, 7, 2252–2260. DOI: https://doi.org/10.1111/gcb.12464

Warren, J.M., Bassman, J.H., Mattinson, D.S., Fellman, J.K., Edwards, G.E., Robberecht, R., 2002. Alteration of foliar flavonoid chemistry induced by enhanced UV-B radiation in field-grown Pinus ponderosa, Quercus rubra and Pseudotsuga menziesii. J Photoch Photobio B, 66, 125-133. DOI: https://doi.org/10.1016/S1011-1344(02)00230-0

World Meteorological Organization (WMO), 2011. Scientific Assessment of Ozone Depletion 2010: Global Ozone Research and Monitoring Project. Report No. 52. A.N. Ajavon, P. A. Newman, J.A.

Pyle, A.R. Ravishankara (Eds.) WMO, UNEP.

Zu, Y.-G., Pang, H.-H., Yu J.-H., Li D.-W., Wei X.-X., Gao Y.-X., Tong L., 2010. Responses in the morphology, physiology and biochemistry of Taxus chinensis var. mairei grown under supple- mentary UV-B radiation. J Photochem Photobiol B: Biol, 98, 2, 152-158. DOI: https://doi.org/10.1016/j.jphotobiol.2009.12.001

Downloads

Published

01.12.2014

Issue

Section

Original Research Paper

How to Cite

Trošt Sedej, T. (2014). Broadleaf and conifer tree responses to long-term enhanced UV-B radiation in outdoor experiments: a review. Acta Biologica Slovenica, 57(2), 13-23. https://doi.org/10.14720/abs.57.2.15619

Similar Articles

11-20 of 46

You may also start an advanced similarity search for this article.