Invertebrates as a study model of anaerobic infections


  • Mateja Rakuša
  • Lidija Kocbek



invertebrate model, anaerobic bacteria, virulence factors, disease


Experiments with invertebrates have recently gained increased attention as a practicable substitute to traditional mammalian models in the study of host-bacterial interactions. Using an invertebrate study model has a number of advantages over
traditional mammalian model including simple growth condition, short life-time, can be easily maintained, infected without anesthesia and with a smaller extent of ethical limitations. From a microbiological viewpoint, importance of anaerobic bacteria as
agents for various diseases remains an interesting field for research. The study of the interaction between invertebrate model host and anaerobic bacteria therefore provides insights into the mechanisms underlying pathogen virulence and host immunity and
complements or even compensates the use of mammalian model in assay for infectious disease. This review offers to consider about the appropriate invertebrate model select for the study of particular aspects of anaerobic bacterial pathogenesis.


Aballay, A., Yorgey, P., Ausubel, F.M., 2000. Salmonella typhimurium proliferates and establishes a persistent infection in the intestine of Caenorhabditis elegans. Curr. Biol. 10(23), 1539-42. DOI:

Abnave, P., Conti, F., Torre, C., Ghigo, E., 2015. What RNAi screens in model organisms revealed about microbicidal response in mammals? Front. Cell Infect. Microbiol. 4, 184. DOI:

Adekambi, T., Reynaud-Gaubert, M., Greub, G., Gevaudan, M.J., La Scola, B., Raoult, D., Drancourt, M., 2004. Amoebal coculture of “Mycobacterium massiliense” sp. nov. from the sputum of a patient with hemoptoic pneumonia. J. Clin. Microbiol. 42(12), 5493-501. DOI:

Allan, K., Perez, K.A., Barnham, K.J., Camakaris, J., Burke, R., 2014. A commonly used Drosophila model of Alzheimer’s disease generates an aberrant species of amyloid-beta with an additional N-terminal glutamine residue. FEBS Lett. 588(20), 3739-43. DOI:

Altincicek, B., Linder, M., Linder, D., Preissner, K.T., Vilcinskas, A., 2007. Microbial metalloproteinases mediate sensing of invading pathogens and activate innate immune responses in the lepidopteran model host Galleria mellonella. Infect. Immun. 75(1), 175-83. DOI:

Arvanitis, M., Glavis-Bloom, J., Mylonakis, E., 2013. Invertebrate models of fungal infection. Biochim. Biophys. Acta 1832(9), 1378-83. DOI:

Balla, K.M., Troemel, E.R., 2013. Caenorhabditis elegans as a model for intracellular pathogen infection. Cell. Microbiol. 15(8), 1313-22. DOI:

Bergan, T., 1984. Pathogenicity of anaerobic bacteria. Scand. J. Gastroenterol. Suppl 91, 1-11.

Bier, E., McGinnis, W., 2008. Model Organisms in the study of development and disease. In: Epstein, C.J., R.P. Erickson, A. Wynshaw-Boris (eds.): Molecular Basis of Inborn Errors of Development. Oxford University Press, New York, vol. 3, pp. 25-48.

Bier, E., Guichard, A., 2012. Deconstructing host-pathogen interactions in Drosophila. Dis. Model. Mech. 5(1), 48-61. DOI:

Bolm, M., Chhatwal, G.S., Jansen, W.T., 2004. Bacterial resistance of daf-2 mutants. Science 303(5666), 1976. DOI:

Bolm, M., Jansen, W.T., Schnabel, R., Chhatwal, G.S., 2004. Hydrogen peroxide-mediated killing of Caenorhabditis elegans: a common feature of different streptococcal species. Infect. Immun. 72(2), 1192-4. DOI:

Borner, R.A., 2016. Isolation and Cultivation of Anaerobes. Adv. Biochem. Eng. Biotechnol. 156, 35-53. DOI:

Boyd, W.A., Smith, M.V., Freedman, J.H., 2012. Caenorhabditis elegans as a model in developmental toxicology. Methods Mol. Biol. 889, 15-24. DOI:

Brillard, J., Ribeiro, C., Boemare, N., Brehelin, M., Givaudan, A., 2001. Two distinct hemolytic activities in Xenorhabdus nematophila are active against immunocompetent insect cells. Appl. Environ. Microbiol. 67(6), 2515-25. DOI:

Brook, I., 2011. Antimicrobial treatment of anaerobic infections. Expert. Opin. Pharmacother. 12(11), 1691-707. DOI:

Brook, I., 2016. Spectrum and treatment of anaerobic infections. J. Infect. Chemother. 22(1), 1-13. DOI:

Brooks, G.F., Carroll, C.K., Butel, J.S., Morse, S.A., Mietzner, T.A., 2010. Jawetz, Melnick, & Adelberg’s Medical Microbiology, ed. 25. McGraw-Hill, p. 814.

Brusca, R.C., Brusca, G.J., 2004. Invertebrates. Systematic Biology 53(4), 662-664. DOI:

Chamilos, G., Lionakis, M.S., Lewis, R.E., Kontoyiannis, D.P., 2007. Role of mini-host models in the study of medically important fungi. Lancet Infect. Dis. 7(1), 42-55. DOI:

Charroux, B., Royet, J., 2012. Gut-microbiota interactions in non-mammals: what can we learn from Drosophila? Semin. Immunol. 24(1), 17-24. DOI:

Clark, T.A., 2012. Responding to pertussis. J. Pediatr. 161(6), 980-2. DOI:

Couillault, C., Ewbank, J.J., 2002. Diverse bacteria are pathogens of Caenorhabditis elegans. Infect. Immun. 70(8), 4705-7. DOI:

Darby, C., Cosma, C.L., Thomas, J.H., 1999. Manoil Lethal paralysis of Caenorhabditis elegans by Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 96(26), 15202-7. DOI:

Dorer, M.S., Isberg, R.R., 2006. Non-vertebrate hosts in the analysis of host-pathogen interactions. Microbes Infect. 8(6), 1637-46. DOI:

Drobne, D., 1995. Bacteria adherent to the hindgut of terrestrial isopods. Acta Microbiol. Immunol. Hung. 42(1), 45-52.

Ewbank, J.J., 2002. Tackling both sides of the host-pathogen equation with Caenorhabditis elegans. Microbes Infect. 4(2), 247-56. DOI:

Finlay, B.B., 1999. Bacterial disease in diverse hosts. Cell 96(3), 315-8. DOI:

Frenzel, E., Kranzler, M., Stark, T.D., Hofmann, T., Ehling-Schulz, M., 2015. The endospore-forming pathogen Bacillus cereus exploits a small colony variant-based diversification strategy in response to aminoglycoside exposure. mBio 6(6), e01172-15. DOI:

Freyth, K., Janowitz, T., Nunes, F., Voss, M., Heinick, A., Bertaux, J., Scheu, S., Paul, R.J., 2010. Reproductive fitness and dietary choice behavior of the genetic model organism Caenorhabditis elegans under semi-natural conditions. Mol. Cells 30(4), 347-53. DOI:

Fuchs, B.B., Mylonakis, E., 2006. Using non-mammalian hosts to study fungal virulence and host defense. Curr. Opin. Microbiol. 9(4), 346-51. DOI:

Gagniere, J., Raisch, J., Veziant, J., Barnich, N., Bonnet, R., Buc, E., Bringer, M.A., Pezet, D., Bonnet, M., 2016. Gut microbiota imbalance and colorectal cancer. World J. Gastroenterol. 22(2), 501-18.

Giannouli, M., Palatucci, A.T., Rubino, V., Ruggiero, G., Romano, M., Triassi, M., Ricci, V., Zarrilli, R., 2014. Use of larvae of the wax moth Galleria mellonella as an in vivo model to study the virulence of Helicobacter pylori. BMC Microbiol. 14, 228. DOI:

Glavis-Bloom, J., Muhammed, M., Mylonakis, E., 2012. Of model hosts and man: using Caenorhabditis elegans, Drosophila melanogaster and Galleria mellonella as model hosts for infectious disease research. Adv. Exp. Med. Biol. 710, 11-7. DOI:

Greub, G., La Scola, B., Raoult, D., 2004. Amoebae-resisting bacteria isolated from human nasal swabs by amoebal coculture. Emerg. Infect. Dis. 10(3), 470-7. DOI:

Guarner, F, Malagelada, J.R., 2003. Gut flora in health and disease. Lancet 361(9356), 512-9. DOI:

Harding, C.R., Schroeder, G.N., Collins, J.W., Frankel, G., 2013. Use of Galleria mellonella as a model organism to study Legionella pneumophila infection. J. Vis. Exp. 81, e50964.

Hofstad, T., 1992. Virulence factors in anaerobic bacteria. Eur. J. Clin. Microbiol. Infect. Dis. 11(11), 1044-8. DOI:

Jansen, W.T., Bolm, M., Balling, R., Chhatwal, G.S., Schnabel, R., 2002. Hydrogen peroxide-mediated killing of Caenorhabditis elegans by Streptococcus pyogenes. Infect. Immun. 70(9), 5202-7. DOI:

Just, I., Hennessey, E.S., Drummond, D.R., Aktories, K., Sparrow, J.C., 1993. ADP-ribosylation of Drosophila indirect-flight-muscle actin and arthrin by Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin. Biochem. Journal 291(2), 409-12. DOI:

Kaletta, T., Hengartner, M.O., 2006. Finding function in novel targets: C. elegans as a model organism. Nat. Rev. Drug Discov. 5(5), 387-98. DOI:

Kim, D.W., Lee, S.K., Ahnn, J., 2014. Phenotypic effect of botulinum toxin A on Caenorhabditis elegans. Animal Cells Syst. 18(3), 172-7. DOI:

König, H., 2006. Intestinal microorganisms of termites and other invertebrates. Springer-Verlag Berlin Heidelberg, Germany. DOI:

Kostanjšek, R., Lapanje, A., Rupnik, M., Štrus, J., Drobne, D., Avguštin, G., 2004. Anaerobic bacteria in the gut of terrestrial isopod Crustacean Porcellio scaber. Folia microbiol. 49(2), 179-82. DOI:

La Scola, B., Birtles, R.J., Greub, G., Harrison, T.J., Ratcliff, R.M., Raoult, D., 2004. Legionella drancourtii sp. nov., a strictly intracellular amoebal pathogen. Int. J. Syst. Evol. Microbiol. 54(3), 699-703. DOI:

Lee, K.A., Lee, W.J., 2014. Drosophila as a model for intestinal dysbiosis and chronic inflammatory diseases. Dev. Comp. Immunol. 42(1), 102-10. DOI:

Lehner, B., Lee, I., 2008. Network-guided genetic screening: building, testing and using gene networks to predict gene function. Brief Funct. Genomics Proteomics 7(3), 217-27. DOI:

Liang, J., Luo, J., Jin, J., 2013. Study of Parkinson’s disease based on Drosophila model. J. Zhejiang University, Medical Sciences 42(6), 685-92.

Loker, E.S., Adema, C.M., Zhang, S.M., Kepler, T.B., 2004. Invertebrate immune systems-not homogeneous, not simple, not well understood. Immunol. Rev. 198, 10-24. DOI:

Mahajan-Miklos, S., Rahme, L.G., Ausubel, F.M., 2000. Elucidating the molecular mechanisms of bacterial virulence using non-mammalian hosts. Mol. Microbiol. 37(5), 981-8. DOI:

Mahajan-Miklos, S., Tan, M.W., Rahme, L.G., Ausubel, F.M., 1999. Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model. Cell 96(1), 47-56. DOI:

Mhatre, S.D., Paddock, B.E., Saunders, A.J., Marenda, D.R., 2013. Invertebrate models of Alzheimer’s disease. J. Alzheimers Dis. 33(1), 3-16. DOI:

Miyata, S., Casey, M., Frank, D.W., Ausubel, F.M., Drenkard, E., 2003. Use of the Galleria mellonella caterpillar as a model host to study the role of the type III secretion system in Pseudomonas aeruginosa pathogenesis. Infect. Immun. 71(5), 2404-13. DOI:

Mowlds, P., Barron, A., Kavanagh, K., 2008. Physical stress primes the immune response of Galleria mellonella larvae to infection by Candida albicans. Microbes Infect. 10(6), 628-34. DOI:

Moy, T.I., Mylonakis, E., Calderwood, S.B., Ausubel, F.M., 2004. Cytotoxicity of hydrogen peroxide produced by Enterococcus faecium. Infect. Immun. 72(8), 4512-20. DOI:

Murphy, E.C, Frick, I.M., 2013. Gram-positive anaerobic cocci-commensals and opportunistic pathogens. FEMS Microbiol. Rev. 37(4), 520-53. DOI:

Mylonakis, E., Casadevall, A., Ausubel, F.M., 2007. Exploiting amoeboid and non-vertebrate animal model systems to study the virulence of human pathogenic fungi. PLoS Pathog. 3(7), e101. DOI:

O’Callaghan, D., Vergunst, A., 2010. Non-mammalian animal models to study infectious disease: worms or fly fishing? Curr. Opin. Microbiol. 13(1), 79-85. DOI:

Ott, L., McKenzie, A., Baltazar, M.T., Britting, S., Bischof, A., Burkovski, A., 2012. Evaluation of invertebrate infection models for pathogenic corynebacteria. FEMS Immunol. Med. Microbiol. 65(3), 413-21. DOI:

Pagnier, I., Raoult, D., La Scola, B., 2008. Isolation and identification of amoeba-resisting bacteria from water in human environment by using an Acanthamoeba polyphaga co-culture procedure. Environ. Microbiol. 10(5), 1135-44. DOI:

Panayidou, S., Ioannidou, E., Apidianakis, Y., 2014. Human pathogenic bacteria, fungi, and viruses in Drosophila: disease modeling, lessons, and shortcomings. Virulence 5(2), 253-69. DOI:

Pukatzki, S., Kessin, R.H., Mekalanos, J.J., 2002. The human pathogen Pseudomonas aeruginosa utilizes conserved virulence pathways to infect the social amoeba Dictyostelium discoideum. Proc. Natl. Acad. Sci. USA 99(5), 3159-64. DOI:

Renwick, J., Daly, P., Reeves, E.P., Kavanagh, K., 2006. Susceptibility of larvae of Galleria mellonella to infection by Aspergillus fumigatus is dependent upon stage of conidial germination. Mycopathologia 161(6), 377-84. DOI:

Shu, X., Lev-Ram, V., Deerinck, T.J., Qi, Y., Ramko, E.B., Davidson, M.W., Jin, Y., Ellisman, M.H., Tsien, R.Y., 2011. A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biol. 9(4), e1001041. DOI:

Tan, M.W., Mahajan-Miklos, S., Ausubel, F.M., 1999. Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc. Natl. Acad. Scil USA 96(2), 715-20. DOI:

Tipping, M., Perrimon, N., 2014. Drosophila as a model for context-dependent tumorigenesis. Jl Cell Physioll 229(1), 27-33.

Wang, L., Kounatidis, I., Ligoxygakis, P., 2014. Drosophila as a model to study the role of blood cells in inflammation, innate immunity and cancer. Front. Cell Infect. Microbiol. 3, 113. DOI:

Wang, Y., Stingl, U., Anton-Erxleben, F., Zimmer, M., Brune, A., 2004. ‘Candidatus Hepatincola porcellionum’ gen. nov., sp. nov., a new, stalk-forming lineage of Rickettsiales colonizing the midgut glands of a terrestrial isopod. Arch. Microbiol. 181(4), 299-304. DOI:

Wei, L., YuJuan, L., XiaoLiang, L., Ping Z., Hong, Y., 2016. Clostridium perfringens promotes the growth and development of Drosophila melanogaster. Acta Entomol. Sin. 59(5), 530-7.

Wilson-Sanders, S.E., 2011. Invertebrate models for biomedical research, testing, and education. ILAR J. 52(2), 126-52. DOI:

Zimmer, M., 2002. Nutrition in terrestrial isopods (Isopoda: Oniscidea): an evolutionary-ecological approach. Biol. Rev. Camb. Philos. Soc. 77(4), 455-93. DOI:






Original Research Paper

How to Cite

Rakuša, M., & Kocbek, L. (2017). Invertebrates as a study model of anaerobic infections. Acta Biologica Slovenica, 60(1), 29-39.

Similar Articles

1-10 of 62

You may also start an advanced similarity search for this article.