Essential oils with the potential for varroa mite control (Varroa destructor): mechanisms of toxicity and negative impact on honey bee (Apis mellifera)


  • Anita Jemec Kokalj
  • Gordana Glavan



acaricides, essential oils, Apis mellifera, nervous system, immune system, varroa mite


The parasitic bee mite varroa (Varroa destructor) is among the most serious honey bee pests. Beekeepers utilize a wide range of different synthetic acaricides to keep mite populations under control. However, due to documented adverse impact of synthetic substances, the use of naturally derived acaricides, among these essential oils, is greatly being promoted. Thymol is already used in beekeeping. We present a review of the existing knowledge regarding the effects of essential oils on honey bees Apis mellifera. We focus only on those that have potential acaricide action. We discuss their mechanisms of toxic action on the immune and nervous systems. We conclude that due to their mechanisms of toxicity several essential oils could be used for varroa mite control, still very little data regarding the negative effects of essential oils on honey bees are known. In particular, knowing their interferences with the immune response is important to be able to predict the potential effect on the colony health. The majority of toxicity data currently exist for thymol and its commercial preparations under acute exposure (Apiguard®, Api Life VAR®), but the data for a
number of other potential acaricide-related essential oils are missing. We recognize the need for systematic screening of potential toxicity and sublethal effects of essential oils with acaricide action on honey bees. Standardised application of essential oils in
honey bee keeping remains a challenging task for the future.


Alayrangues, J., Hotier, L., Massou, I., Bertrand, Y., Armengaud, C., 2016. Prolonged effects of in-hive monoterpenoids on the honey bee Apis mellifera. Ecotoxicology, 25, 856-862. DOI:

Albo, G.N., Henning, C., Ringuelet, J., Reynaldi, F.J., De Giusti, M.R., Alippi, A.M., 2003. Evaluation of some essential oils for the control and prevention of American Foulbrood disease in honey bees. Apidologie, 34, 417-427. DOI:

Amdam, G.V., Simões, Z.L., Hagen, A., Norberg, K., Schrøder, K., Mikkelsen, Ø., Kirkwood, T.B., Omholt, S.W., 2004. Hormonal control of the yolk precursor vitellogenin regulates immune function and longevity in honeybees. Experimental Gerontology, 39(5), 767-773. DOI:

Barbara, G.S., Zube, C., Rybak, J., Gauthier, M., Grünewald, B., 2005. Acetylcholine, GABA and glutamate induce ionic currents in cultured antennal lobe neurons of the honeybee, Apis mellifera. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural and Behavioral Physiology, 191, 823-836. DOI:

Bergougnoux, M., Treilhou, M., Armengaud, C., 2013. Exposure to thymol decreased phototactic behaviour in the honeybee (Apis mellifera) in laboratory conditions. Apidologie, 44, 82-89. DOI:

Barron, A.B., Maleszka, J., Vander Meer, R.K., Robinson, G.E., 2007. Octopamine modulates honey bee dance behavior. Proceedings of National Academy of Sciences USA, 104, 1703-1707. DOI:

Berry, J.A., Hood, W.M., Pietravalle, S., Delaplane, K.S., 2013. Field-level sublethal effects of approved bee hive chemicals on honey bees (Apis mellifera L). PLoS ONE, 8(10), e76536. DOI:

Bevk, D., Kralj, J., Čokl A., 2012. Coumaphos affects food transfer between workers of honeybee Apis mellifera. Apidologie, 43, 465-470. DOI:

Bicker, G., 1999. Histochemistry of classical neurotransmitters in antennal lobes and mushroom bodies of the honeybee. Microscopy Research and Techique, 45(3), 174-183. DOI:<174::AID-JEMT5>3.0.CO;2-U

Bicker, G., Schäfer, S., Kingan, T.G., 1985. Mushroom body feedback interneurons in the honey bee show GABA-like immunoreactivity. Brain Research, 360, 394-397. DOI:

Blenau, W., Rademacher, E., Baumann, A., 2012. Plant essential oils and formamidines as insecticides/ acaricides: what are the molecular targets? Apidologie, 43, 334-347. DOI:

Boncristiani, H., Underwood, R., Schwarz, R., Evans, J.D., Pettis, J., van Engelsdorp, D., 2012. Direct effect of acaricides on pathogen loads and gene expression levels in honey bees Apis mellifera. Journal of Insect Physiology, 58, 613-620. DOI:

Bonnafé, E., Alayrangues, J., Hotier, L., Massou, I., Renom, A., Souesme, G., Marty, P., Allaoua, M., Treilhou, M., Armengaud, C., 2017. Monoterpenoid-based preparations in beehives affect learning, memory, and gene expression in the bee brain. Environmental Toxicology and Chemistry, 36, 337-345. DOI:

Burley, L.M., Fell, R.D., Saacke, R.G., 2008. Survival of honey bee (Hymenoptera: Apidae) spermatozoa incubated at room temperature from drones exposed to miticides. Journal of Economic Entomology, 101(4), 1081-1087. DOI:

Burrell, B.D., Smith, B.H., 1995. Modulation of the honey bee (Apis mellifera) sting response by octopamine. Journal of Insect Physiology, 41, 671-680. DOI:

Cano Lozano, V., Bonnard, E., Gauthier, M., Richard, D., 1996. Mecamylamine-induced impairment of acquisition and retrieval of olfactory conditioning in the honeybee. Behavioural Brain Research, 81, 215-222. DOI:

Cano Lozano, V., Bonnard, E., Gauthier, M., Richard, D., 2001. Memory impairment induced by cholinergic antagonists injected into the mushroom bodies of the honeybee. Journal of Comparative Physiology. A, 187, 249-254. DOI:

Carayon, J.L., Tene, N., Bonnafe, E., Alayrangues, J., Hotier, L., Armengaud, C., Treilhou, M., 2014. Thymol as an alternative to pesticides: Persistence and effects of Apilife Var on the phototactic behavior of the honeybee Apis mellifera. Environmental Science and Pollution Research, 21, 4934-4939. DOI:

Chaimanee, V., Evans, J.D., Chen, Y., Jackson, C., Pettis, J.S., 2016. Sperm viability and gene expression in honey bee queens (Apis mellifera) following exposure to the neonicotinoid insecticide imidacloprid and the organophosphate acaricide coumaphos. Journal of Insect Physiology, 89, 1-8. DOI:

Chapman, R.F. 1998. Nervous system, The insects: structure and function, 5th ed. Cambridge University Press, Cambridge, 901 pp.

Cizelj, I., Glavan, G., Božič, J., Oven, I., Mrak, V., Narat, M., 2016. Prochloraz and coumaphos induce different gene expression patterns in three developmental stages of the Carniolan honey bee (Apis mellifera carnica Pollmann). Pesticide Biochemistry and Physiology, 128, 68-75. DOI:

Collins, A.M., Pettis, J.S., Wilbanks, R., Feldlaufer, M.F., 2004. Performance of honey bee (Apis mellifera) queens reared in beeswax cells impregnated with coumaphos. Journal of Apicultural Research, 43, 128-134. DOI:

Dai, P., Jack, C. J., Mortensen, A. N., Ellis, J. D., 2017. Acute toxicity of five pesticides to Apis mellifera larvae reared in vitro. Pest Management Science, doi:10.1002/ps.4608. DOI:

Damiani, N., Gende, L.B., Bailac, P., Marcangeli, J.A., Eguaras, M.J., 2009. Acaricidal and insecticidal activity of essential oils on Varroa destructor (Acari: Varroidae) and Apis mellifera (Hymenoptera: Apidae). Parasitology Research, 106, 145-152. DOI:

Davies, T.G., Field, L.M., Usherwood, P.N., Williamson, M.S., 2007. DDT, pyrethrins, pyrethroids and insect sodium channels. IUBMB Life, 59(3), 151-162. DOI:

Déglise, P., Grünewald, B., Gauthier, M., 2002. The insecticide imidacloprid is a partial agonist of the nicotinic receptor of honeybee Kenyon cells. Neuroscience Letters, 321, 13-16. DOI:

Desneux, N., Decourtye, A., Delpuech, J.M., 2007. The sublethal effects of pesticides on beneficial arthropods. Annual Review of Entomology, 52(1), 81-106. DOI:

Dietemann, V., Nazzi, F., Martin, S.J., Anderson, D.L., Locke, B., Delaplane, K.S., Wauquiez, Q., Tannahill, C., Frey, E., Ziegelmann, B., Rosenkranz, P., Ellis, J.D., 2013. Standard methods for varroa research, Journal of Apicultural Research, 52(1), 1-54. DOI:

Duay, P., de Jong, D., Engels, W., 2002. Decreased flight performance and sperm production in drones of the honey bee (Apis mellifera) slightly infested by Varroa destructor mites during pupal development. Genetics and Molecular Research, 1, 227-232.

Dudai, Y., Buxbaum, J., Corfas, G., Ofarim M., 1987. Formamidines interact with Drosophila octopamine receptors, alter the flies’ behaviour and reduce their learning ability. Journal of Comparative Physiology, 161(5), 739-746. DOI:

El Hassani, A.K., Dupuis, J.P., Gauthier, M., Armengaud, C., 2009. Glutamatergic and GABAergic effects of fipronil on olfactory learning and memory in the honeybee. Invertebrate Neuroscience, 9(2), 91-100. DOI:

Ellis, M.D., Baxendale, F.P., 1997. Toxicity of seven monoterpenoids to tracheal mites (Acari: Tarsonemidae) and their honey bee (Hymenoptera: Apidae) hosts when applied as fumigants. Journal of Economic Entomology, 90(5), 1087-1091. DOI:

Enan, E., 2001. Insecticidal activity of essential oils: octopaminergic sites of action. Comparative Biochemitry and Physiology, C: Toxicology and. Pharmacology, 130, 325-337. DOI:

Enan, E.E., 2005. Molecular response of Drosophila melanogaster tyramine receptor cascade to plant essential oils. Insect Biochemistry and Molecular Biology, 35, 309-321. DOI:

Evans, J.D., Aronstein, K., Chen, Y.P., Hetru, C., Imler, J.L., Jiang, H., Hultmark D., 2006. Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Molecular Biology, 15(5), 645-656. DOI:

Evans, J.D. 2006. Beepath: An ordered quantitative-PCR array for exploring honey bee immunity and disease. Journal of Invertebrate Pathology, 93, 135-139. DOI:

Evans, P.D., Gee, J.D., 1980. Action of formamidine pesticides on octopamine receptors. Nature, 287 (5777), 60-62. DOI:

Farina, W.M., Wainselboim A.J., 2005. Trophallaxis within the dancing context: a behavioral and thermographic analysis in honeybees (Apis mellifera) Apidologie, 36, 43-47. DOI:

Farooqui, T. 2012. Review of octopamine in insect nervous systems. Open Access Insect Physiology, 4, 1-17. DOI:

Farooqui, T., Robinson, K., Vaessin, H., Smith, B.H. 2003. Modulation of early olfactory processing by an octopaminergic reinforcement pathway in the honeybee. Journal of Neuroscience, 23, 5370-5380. DOI:

Floris, I., Satta, A., Cabras, P., Garau, V.L., Angioni, A., 2004. Comparison between two thymol formulations in the control of Varroa destructor: effectiveness, persistence, and residues. Journal of Economic Entomology, 97(2), 187-191. DOI:

Fowler, M.A., Montell, C., 2013. Drosophila TRP channels and animal behavior. Life Sciences, 92(8-9), 394-403. DOI:

Fries, I., Hansen, H., Imdorf, A., Rosenkranz, P., 2003. Swarming in honey bees (Apis mellifera) and Varroa destructor population development in Sweden. Apidologie, 34, 389-398. DOI:

Fukuto, T.R, 1990. Mechanism of action of organophosphorus and carbamate insecticides. Environmental Health Perspectives, 87, 245-254. DOI:

Garrido, P.M., Antúnez, K., Martín, M., Porrini, M.P., Zunino, P., Eguaras, M.J., 2013. Immune-related gene expression in nurse honey bees (Apis mellifera) exposed to synthetic acaricides. Journal of Insect Physiology, 59, 113-119. DOI:

Gashout, A.H., Guzmán-Novoa, E., 2009. Acute toxicity of essential oils and other natural compounds to the parasitic mite, Varroa destructor, and to larval and adult worker honey bees (Apis mellifera). Journal of Apicultural Research, 48, 263-269. DOI:

Ghasemi, V., Moharramipour, S., Tahmasbi, G., 2011. Biological activity of some plant essential oils against Varroa destructor (Acari: Varroidae), an ectoparasitic mite of Apis mellifera (Hymenoptera: Apidae). Experimental and Applied Acarology, 55, 147-154. DOI:

Gregorc, A., Bowen, I., 2000. Histochemical characterization of cell death in honeybee larvae midgut after treatment with Paenibacillus larvae, amitraz and oxytetracycline. Cell Biology International, 24, 319-324. DOI:

Gregorc, A., Evans, J.D., Scharf, M., Ellis, J.D., 2012. Gene expression in honey bee (Apis mellifera) larvae exposed to pesticides and Varroa mites (Varroa destructor). Journal of Insect Physiology, 58(8), 1042-1049. DOI:

Grohmann, L., Blenau, W., Erber, J., Ebert, P.R., Strünker, T., Baumann, A., 2003. Molecular and functional characterization of an octopamine receptor from honeybee (Apis mellifera) brain. Journal of Neurochemistry, 86, 725-735. DOI:

Grünewald, B., 1999. Morphology of feedback neurons in the mushroom body of the honeybee, Apis mellifera. Journal of Comparative Neurology, 404(1), 114-126. DOI:<114::AID-CNE9>3.0.CO;2-#

Haarmann, T., Spivak, M., Weaver, D., Weaver, B., Glenn, T., 2002. Effects of fluvalinate and coumaphos on queen honey bees (Hymenoptera: Apidae) in two commercial queen rearing operations. Journal of Economic Entomology, 95, 28-35. DOI:

Hammer, M., Menzel, R., 1998. Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honeybees. Learning and Memory, 5, 146-156. DOI:

Heisenberg, M., 1998. What do the mushroom bodies do for the insect brain? An introduction. Learning and Memory, 5 (1-2), 1-10. DOI:

Hildebrand, J.G., ,Shepherd, G.M., 1997. Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annual Review of Neuroscience, 20, 595-631. DOI:

Hillyer, J.F., 2016. Insect immunology and hematopoiesis. Developmental and Comparative Immunology, 58, 102-118. DOI:

HMA, Heads of Medicines Agencies, 2015.

Imdorf, A., Bogdanov, S., Ibáñez Ochoa, R., Calderone, N.W., 1999. Use of essential oils for the control of Varroa jacobsoni Oud. in honey bee colonies. Apidologie, 30, 209-228. DOI:

Imdorf, A., Kilchenmann, V., Bogdanov, S., Bachofen, B., Beretta, C., 1995. Toxic effects of thymol, camphor, menthol and eucalyptol on Varroa jacobsoni Oud and Apis mellifera L in a laboratory test. Apidologie, 26, 27-31. DOI:

James, R.R., Xu, J., 2012. Mechanisms by which pesticides affect insect immunity. Journal of Invertebrate Pathology, 109, 175-182. DOI:

Johnson, R.M., Ellis, M.D., Mullin, C.A., Frazier, M., 2010. Pesticides and honey bee toxicity - USA. Apidologie, 41, 312-331. DOI:

Kakumanu, M.L., Reeves, A.M., Anderson, T.D., Rodrigues, R.R., Williams, M.A., 2016. Honey bee gut microbiome is altered by in-hive pesticide exposures. Frontiers in Microbiology, 7, 1255. DOI:

Kenyon, F.C., 1896. The meaning and structure of the so-called „mushroom bodies“ of the hexapod brain. American Naturalist, 356 (30), 643-650. DOI:

Koul, O., Walia, S., Dhaliwal, G. S., 2008. Essential oils as green pesticides: potential and constraints. Biopesticides International, 4(1), 63-84.

Kral, K., 1980. Acetylcholinesterase in the ocellus of Apis mellifica. Journal of Insect Physiology, 26, 807-809. DOI:

Kral, K., Schneider, L., 1981. Fine structural localisation of acetylcholinesterase activity in the compound eye of the honeybee (Apis mellifica L.). Cell and Tissue Research, 221(2), 351-359. DOI:

Kreissl, S., Bicker. G., 1989. Histochemistry of acetylcholinesterase and immunocytochemistry of an acetylcholine receptor-like antigen in the brain of the honeybee. Journal of Comparative Neurology, 286 (1), 71-84. DOI:

Kreissl, S., Eichmüller, S., Bicker, G., Rapus, J., Eckert, M., 1994. Octopamine-like immunoreactivity in the brain and subesophageal ganglion of the honeybee. Journal of Comparative Neurology, 348(4), 583-595. DOI:

Lindberg, C.M., Melathopoulos, A.P., Winston, M.L., 2000. Laboratory evaluation of miticides to control Varroa jacobsoni (Acari: Varroidae), a honey bee (Hymenoptera: Apidae) parasite. Journal DOI:

of Economic Entomology, 93, 189-198.

Menzel, R., 2001. Searching for the memory trace in a mini-brain, the honeybee. Learning and Memory, 8 (2), 53-62. DOI:

Mercer, A.R., Mobbs, P.G., Davenport, A.P., Evans, P.D., 1983. Biogenic amines in the brain of the honeybee, Apis mellifera. Cell and Tissue Research, 234, 655-677. DOI:

Marchetti, S., Barbattini, R., D’Agaru, M., 1984. Comparative effectiveness of treatments used to control Varroa jacobsoni Oud. Apidologie, 15 (4), 363-378. DOI:

Meyer, E.P., Matute, C., Streit, P., Nässel, D.R., 1986. Insect optic lobe neurons identifiable with monoclonal antibodies to GABA. Histochemistry, 84, 207-216. DOI:

Mobbs. P.G., 1982. The Brain of the Honeybee Apis Mellifera. I. The Connections and Spatial Organization of the Mushroom Bodies. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 298 (1091), 309-354. DOI:

Mobbs, P.G., 1985. Brain structure. In: Kerkut, G., Gilbert, L.I. (eds.): Comprehensive insect physiology pharmacology and biochemistry, 1st ed. Pergamon Press, Oxford, pp 299-370.

Mondet, F., Goodwin, M., Mercer, A., 2011. Age-related changes in the behavioural response of honeybees to Apiguard®, a thymol-based treatment used to control the mite Varroa destructor. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural and Behavioral Physiology, 197, 1055-1062. DOI:

Nauen, R., Ebbinghaus-Kintscher, U., Schmuck, R., 2001. Toxicity and nicotinic acetylcholine receptor interaction of imidacloprid and its metabolites in Apis mellifera (Hymenoptera: Apidae). Pest Management Science, 57, 577-586. DOI:

OECD, Test No. 245: Honey Bee (Apis Mellifera L.), Chronic Oral Toxicity Test (10-Day Feeding). (dostop 23.11.2017)

Oruc, H.H., Hranitz, J. M., Sorucu, A., Duell, M., Cakmak, I., Aydin, L., Orman, A., 2012. Determination of acute oral toxicity of flumethrin in honey bees. Journal of Economic Entomology, 105 (6), 1890-1894. DOI:

Pettis, J.S., Collins, A., Wilbanks ,R., 2004. Effects of coumaphos on queen rearing in the honey bee, Apis mellifera. Apidologie, 35, 605-610. DOI:

Rejski program za kranjsko čebelo (2011-2015), 2010., 2015.;

Roma, G. C., Bueno, O. C., Camargo-Mathias, M. I., 2010. Morpho-physiological analysis of the insect fat body: a review. Micron, 41, 395-401. DOI:

Rosenkranz, P., Aumeier, P., Ziegelmann, B., 2010. Biology and control of Varroa destructor. Journal of Invertebrate Pathology, 103, Suppl 1, S96-119. DOI:

Rybak, J., Menzel, R., 1993. Anatomy of the mushroom bodies in the honey bee brain: the neuronal connections of the alpha-lobe. Journal of Comparative Neurology, 334(3), 444-465. DOI:

Rybak, J., Menzel, R., 1998. Integrative properties of the Pe1 neuron, a unique mushroom body output neuron. Learning and Memory, 5(1-2), 133-145. DOI:

Sachse, S., Galizia, C.G., 2002. Role of inhibition for temporal and spatial odor representation in olfactory output neurons: a calcium imaging study. Journal of Neurophysiology, 87(2), 1106-1117. DOI:

Sammataro, D., Finley, J., LeBlanc, B., Wardell, G., Ahumada-Segura, F., Carroll, M.J., 2009. Feeding essential oils and 2-heptanone in sugar syrup and liquid protein diets to honey bees (Apis mellifera L.) as potential Varroa mite (Varroa destructor) controls. Journal of Apiculture Research, 48, 256-262. DOI:

Sánchez-Bayo, F., Goulson, D., Pennacchio, F., Nazzi, F., Goka, K., Desneux, N., 2016. Are bee diseases linked to pesticides? - A brief review. Environmental International, 89-90, 7-11. DOI:

Schafer, S., Bicker, G., 1986. Distribution of GABA-like immunoreactivity in the brain and suboesophageal ganglion of the honeybee. Journal of Comparative Neurology, 246, 287-300. DOI:

Schäfer, S., Bicker, G., 1986. Common projection areas of 5-HT- and GABA-like immunoreactive fibers in the visual system of the honeybee. Brain Research, 380(2), 368-370. DOI:

Scheidler, A., Kaulen, P., Brüning, G., Erber J., 1990. Quantitative autoradiographic localization of [125I]alpha-bungarotoxin binding sites in the honeybee brain. Brain Research, 534 (1-2), 332-335. DOI:

Schmehl, D.R., Teal, P.E., Frazier, J.L., Grozinger, C.M., 2014. Genomic analysis of the interaction between pesticide exposure and nutrition in honey bees (Apis mellifera). Journal of Insect Physiology, 71, 177-190. DOI:

Schneider, C., Bevk, D., Grünewald, B., Tautz, J., Fuchs, S., 2009. Radiofrequency identification. Apidologie, 40, 659-660.

Schürmann, F.W., 1970. Structure of the mushroom bodies of the insect brain. I. Synapses in the peduncle. Zeitschritt fur Zellforschung and Mikroskopische Anatomie, 103(3), 365-381. DOI:

Schwaerzel, M., Monastirioti, M., Scholz, H., Friggi-Grelin, F., Birman, S., Heisenberg, M., 2003. Dopamine and octopaminergic differentiate between aversive and appetitive olfactory memories in Drosophila. Journal of Neuroscience, 23, 10495-10502. DOI:

Smodis Skerl, M.I.S., Gregorc, A., 2010. Heat shock proteins and cell death in situ localisation in hypopharyngeal glands of honeybee (Apis mellifera carnica) workers after imidacloprid or coumaphos treatment. Apidologie, 41, 73-86. DOI:

Thany, S.H., Tricoire-Leignel, H., Lapied, B., 2010. Identification of cholinergic synaptic transmission in the insect nervous system. Advances in Experimental Medicine and Biology, 683, 1-10. DOI:

Van Buren, N.W.M., Mariën, A.GH., Oudejans, R.C.H.M., Velthuis., H.H.W., 1992. Perizin, an acaricide to combat the mite Varroa jacobsoni its distribution in and influence on the honeybee Apis mellifera. Physiological Entomology, 17, 288-296. DOI:

Vigan, M., 2010. Essential oils: renewal of interest and toxicity. European Journal of Dermatology, 20(6), 685-692.

Villa, J.D., Bustamante, D.M., Dunkley, J.P., Escobar, L.A., 2008. Changes in honey bee (Hymenoptera: Apidae) colony swarming and survival pre- and postarrival of Varroa destructor (Mesostigmata: Varroidae) in Louisiana. Anals of Entomological Society of America, 101 (5), 867-871. DOI:

Whittington, R., Winston, M.L., Melathopoulos, A.P., Higo, H.A., 2000. Evaluation of the botanical oils neem, thymol, and canola sprayed to control Varroa jacobsoni Oud. (Acari: Varroidae) and Acarapsis woodi (Acari: Tarsonemidae) in colonies of honey bees (Apis mellifera L., Hymenoptera: Apidae). American Bee Journal, 140 (7), 565-572.

Wustenberg, D.G., Grunewald, B., 2004. Pharmacology of the neuronal nicotinic receptor of cultured Kenyon cells of the honeybee, Apis mellifera. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural and Behavioral Physiology, 190, 807-821. DOI:






Original Research Paper

How to Cite

Jemec Kokalj, A., & Glavan, G. (2017). Essential oils with the potential for varroa mite control (Varroa destructor): mechanisms of toxicity and negative impact on honey bee (Apis mellifera). Acta Biologica Slovenica, 60(2), 3-19.

Similar Articles

1-10 of 57

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)