Impact of UV radiation and selenium on two buckwheat species
DOI:
https://doi.org/10.14720/abs.60.2.15684Keywords:
Tartary buckwheat, hybrid buckwheat, selenium, selenate, UV radiationAbstract
The impact of selenium (Se) addition and UV radiation on Tartary buckwheat and hybrid buckwheat were studied. Both buckwheat species grew outdoors at the experimental field of the Biotechnical Faculty in Ljubljana. They were exposed to four different treatments regarding the UV radiation (ambient or reduced) and added Se (naturally accessible or foliary treated with Na selenate in concentration 10 mg Se L-1). The content of pigments (chlorophyll a and b, carotenoids, anthocyanins) and UV absorbing compounds, transpiration rate, photochemical efficiency of photosystem II (PS) II and respiratory potential were measured. At the end of experiment we determined the biomass of different plant parts. The results showed that irrespective of the buckwheat species the added Se lowered the content of chlorophyll a and carotenoids, while it increased the effective quantum yield of PS II and transpiration rate. UV radiation reduced the content of anthocyanins only. Se and UV-B radiation as independent factors exerted no impact on buckwheat yield. Hybrid buckwheat had a higher physiological activity than the Tartary buckwheat yet a smaller biomass of plant parts, including reduced yield. Ambient UV radiation had a slightly negative impact on hybrid buckwheat while it had no noticeable negative impact on Tartary buckwheat. The Se treated Tartary and hybrid buckwheat were suitable for human and
animal diet regarding to Se concentrations in leaves and grains.
References
Bonafaccia, G., Marocchini, M., Kreft, I. 2003. Composition and technological properties of the flour and bran from common and tartary buckwheat. Food Chemistry, 80, 9-15. DOI: https://doi.org/10.1016/S0308-8146(02)00228-5
Breznik, B., Germ, M., Gaberščik, A., Kreft, I., 2005. Combined effects of elevated UV-B radiation and the addition of selenium on common (Fagopyrum esculentum Moench) and Tartary (Fagopyrum tataricum (L.) Gaertn.) buckwheat. Photosynthetica, 43(4), 583-589. DOI: https://doi.org/10.1007/s11099-005-0091-1
Caldwell, M.M., 1968. Solar UV radiation as an ecological factor for alpine plants. Ecological Monographs, 38, 243-268. DOI: https://doi.org/10.2307/1942430
Chen, Q.F., 2001. Discussion on the origin of cultivated buckwheat in genus Fagopirum (Polygonaceae). The proceeding of the 8th ISB. 206-2013. Djanaguiraman, M., Prasad, P.V.V., Seppanen, M., 2010. Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defence system. Plant Physiology and Biochemistry, 48, 999-1007. DOI: https://doi.org/10.1016/j.plaphy.2010.09.009
Drumm, H., Mohr, H., 1978. The mode of interaction between blue (UV) light photoreceptor and phytochrome in anthocyanin formation of the sorghum seedling. Photochemistry and Photobiology, 27, 241-248. DOI: https://doi.org/10.1111/j.1751-1097.1978.tb07595.x
Germ, M., 2006. The effect of UV-B radiation and selenium on respiratory potential in common buckwheat (Fagopyrum esculentum). Fagopyrum, 23, 91–93.
Germ, M., Gaberščik, A., 2003. Dihalni potencial – kazalnik stresa pri rastlinah. Zbornik Biotehniške fakultete Univerze v Ljubljani. Kmetijstvo 81(2), 335–339.
Germ, M., Kacjan Maršić, N., Turk, J., Pirc, M., Golob, A., Jerše, A., Kroflič, A., Šircelj, H., Stibilj, V., 2015. The effect of different compounds of selenium and iodine on selected biochemical and physiological characteristics in common buckwheat and pumpkin sprouts. Acta Biologica
Slovenica, 58(1), 35-44.
Germ, M., Kreft, I., Osvald, J., 2005. Influence of UV-B exclusion and selenium treatment on photochemical efficiency of photosystem II; Yield and respiratory potential in pumpkins (Cucurbita pepo L.). Plant Physiology and Biochemistry, 43, 445-448. DOI: https://doi.org/10.1016/j.plaphy.2005.03.004
Germ, M., Stibilj, V., Kreft, I., 2007. Metabolic importance of selenium for plants. The European Journal of Plant Science and Biotechnology 1(1): 91-97.
Golob, A., Germ, M., Kreft, I., Zelnik, I., Kristan, U., Stibilj, V., 2016. Selenium uptake and Se compounds in Se-treated buckwheat. Acta Botanica Croatica, 75(1), 17-24. doi: 10.1515/botcro-2016-0016. DOI: https://doi.org/10.1515/botcro-2016-0016
Golob, A., Stibilj, V., Kreft, I., Vogel-Mikuš, K., Gaberščik, A., Germ, M., 2018. Selenium treatment alters the effects of UV radiation on chemical and production parameters in hybrid buckwheat. Acta Agriculturae Scandinavica B. S. P., 68(1), 5-15. DOI: https://doi.org/10.1080/09064710.2017.1349172
Golob, A., Kavčič, J., Stibilj, V., Gaberščik, A., Vogel-Mikuš, K., Germ, M., 2017. The effect of selenium and UV radiation on leaf traits and biomass production in Triticum aestivum L. Ecotoxicology and Environmental Safety 136, 142-149. doi: 10.1016/j.ecoenv.2016.11.007. DOI: https://doi.org/10.1016/j.ecoenv.2016.11.007
Gould, K.S., 2004. Nature’s swiss army knife: the diverse protective roles of anthocyanins in leaves. Journal of Biomedicine and Biotechnology, 5, 314-320. DOI: https://doi.org/10.1155/S1110724304406147
Fabjan, N., Rode, J., Košir, I.J., Wang, Z., Zhang, Z., Kreft, I., 2003. Tartary buckwheat (Fagopyrum tataricum Gaertn.) as a source of dietary rutin and quercitrin. Journal of Agricultural and Food Chemistry, 51, 6452-6455. DOI: https://doi.org/10.1021/jf034543e
Fesenko, N.I., Fesenko, N.N., 2010. Fagopyrum hybridum: A process of the new buckwheat crop development. In: Advances in buckwheat research. Proceedings of the 11th International Symposium on Buckwheat, Orel (Russia), 19 - 23. Julij 2010. Zotikov, V.I. and Parakhin, N.V. (eds.). Orel, All-Russia Research Institute of Legumes and Groat Crops, 308-313.
Kreft, I., Fabjan, N., Yasumoto, K., 2006. Rutin content in buckwheat (Fagopyrum esculentum Moench) food materials and products. Food Chemistry, 98, 508-512. DOI: https://doi.org/10.1016/j.foodchem.2005.05.081
Kenner, A.A., Ahmed, S.I., 1975. Measurements of electron transport activities in marine phytoplankton. Marine Biology, 33, 119-127. DOI: https://doi.org/10.1007/BF00390716
Kolenc, T., 2013. Vsebnost selena v semenih poljščin, pridelanih v različnih območjih Slovenije. Diplomsko delo. Ljubljana, Pedagoška fakulteta, Biotehniška fakulteta, Oddelek za biologijo, 68 str.
Kuznetsov, Vas. V., Kholodova, V.P., Kuznetsov, V.V., Yagodin, B.A., 2003. Selenium regulates the water status of plants exposed to drought. Doklady Biological Sciences, 390, 266-268. DOI: https://doi.org/10.1023/A:1024426104894
Lichtenthaler, H.K., Buschmann, C., 2001a. Extraction of photosynthetic tissues: chlorophylls and carotenoids. Current Protocols in Food Analytical Chemistry, F4.2.1-F4.2.6. John Wiley and Sons Inc., New York. Lichtenthaler, H.K., Buschmann, C., 2001b. Chlorophylls and carotenoids: measurement and characterisation by UV-VIS. Current Protocols in Food Analytical Chemistry, F4.3.1-F4.3.8. John DOI: https://doi.org/10.1002/0471142913.faf0403s01
Wiley and Sons Inc., New York. Nawaz, F., Ashraf, M.Y., Ahmad, R., Waraich, E.A., Shabbir, R.N., Bukhari, M.A., 2015. Supplemental
selenium improves wheat grain yield and quality through alternations in biochemical processes under normal and water deficit. Food Chemistry, 175, 350-357. DOI: https://doi.org/10.1016/j.foodchem.2014.11.147
Nawaz, F., Naeem, M., Ashraf, M.Y., Tahir, M.N., Zulfiqar, B., Salahuddin, Shabbir, M.R.N., Aslam, M., 2016. Selenium supplementation affects physiological and biochemical processes to improve fodder yield and quality of maize (Zea mays L.) under water deficit conditions. Frontiers in Plant Science, 7, 1438. DOI: https://doi.org/10.3389/fpls.2016.01438
Padmaja, K., Prasad, D.D.K., Prasad, A.R.K., 1989. Effect of selenium on chlorophyll biosynthesis in mung bean seedlings. Phytochemistry, 28, 3321-3324. DOI: https://doi.org/10.1016/0031-9422(89)80339-5
Pirc, S., Šajn, R., 1997. Vloga geokemije v ugotavljanju kemične obremenitve okolja. V: Projekt evropskega leta varstva narave 1995. Kemizacija okolja in življenja. Do katere meje? Slovensko ekološko društvo, Ljubljana, 165-185.
Schreiber, U., Kühl, M., Klimant, I., Reising, H., 1996. Measurement of chlorophyll fluorescence within leaves using modified PAM fluorometer with a fiber-optic microprobe. Photosynthesis research, 47, 103-109. DOI: https://doi.org/10.1007/BF00017758
White, P.J., 2016. Selenium accumulation by plants. Annals of Botany, 117, 217-235.
Wieslander, G., Fabjan, N., Vogrinčič, M., Kreft, I., Vombergar, B., Norbäck, D., 2012. Effects of common and Tartary buckwheat consumption on mucosal symptoms, headache and tiredness: A double-blind crossover intervention study. International Journal of Food, Agriculture and Environment, 10, 107-110.
Xue, T.L., Hartikainen, H., Piironen, V., 2001. Antioxidative and growth-promoting effects of selenium on senescing lettuce. Plant and Soil, 237, 55-61. DOI: https://doi.org/10.1023/A:1013369804867
Yao, X., Chu, J., Ba, C., 2010. Antioxidant responses of wheat seedlings to exogenous selenium supply under enhanced ultraviolet-B. Biological Trace Element Research, 136, 96-105. DOI: https://doi.org/10.1007/s12011-009-8520-9
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.