No chronic effects on biochemical biomarkers, feeding and survival of carnolian honeybees (Apis mellifera carnica) after exposure to nanosized carbon black and titanium dioxide


  • Anita Jemec
  • Tamara Milivojević
  • Damjana Drobne
  • Kristina Sepčić
  • Gordana Glavan



nanopesticide, carbon black nanomaterial, titanium dioxide nanomaterial, acetylcholinesterase, glutathione S-transferase, catalase, feeding behaviour


Honeybees (Apis mellifera) are important pollinators threatened by environmental pollution, plan protection products and other potential contaminants. Due to an extensive predicted use of engineered nanomaterials (NMs) in agriculture the impact on honeybees should be investigated. We studied the 10-days chronic dietary effect of carbon black (CB) and titanium dioxide (TiO2) NMs on the antioxidant activities, cholinergic function, feeding behaviour and survival of honeybees. Exposure of honeybees Apis mellifera carnica to TiO2 and CB NMs (1 mg ml-1) did not affect the feeding and survival. No alteration of catalase, acetylcholinesterase and glutathione S-transferase enzymatic activity was noticed in the brain of honeybees, indicating that TiO2 and CB NMs at the tested exposure dose had no adverse effects on honeybees. Currently predicted environmental concentrations for TiO2 and CB NMs are significantly lower than the concentration tested in the current study. Based on our findings we conclude that the potential use of TiO2 and CB NMs in agriculture is currently safe for honeybees at the tested concentration level and presents potential advantages compared to other NMs with known toxic potential.


Aruoja, V., Dubourguier, H., Kasemets, K., Kahru A., 2009. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ, 407, 1461-1468. DOI:

Barata, C., Varo, I., Navarro, J.C., Arun, S., Porte C., 2005. Antioxidant enzyme activities and lipid peroxidation in the freshwater cladoceran Daphnia magna exposed to redox cycling compounds. Comp Biochem Physiol, 140, 175-186. DOI:

Bondarenko, O.M., Heinlaan, M., Sihtmäe, M., Ivask, A., Kurvet, I., Jemec, A., Mannerström, M., Heinonen, T., Rekulapelly, R., Singh, S., Zou, J., Pyykkö, I., Drobne, D., Kahru, A., 2016. In vi- tro (eco) toxicity screening and hazard grouping of seven engineered nanomaterials: FP7 project NANOVALID. Nanotoxicology, accepted manuscript. DOI:

Burden, C.M., Elmore, C., Hladun, K.R., Trumble, J.T., Smith, B.H., 2016. Acute exposure to selenium disrupts associative conditioning and long-term memory recall in honey bees (Apis mellifera). Ecotoxicol Environ Saf, 127, 71-79. DOI:

Cao, Y. S., Chen, J. X., Wang, Y. L., Liang, J., Chen, L. H., and Lu, Y. T., 2005. HPLC/UV analysis of chlorfenapyrresidues in cabbage and soil to study the dynamics of different formulations. Sci Total Environ, 350, 38-46. DOI:

Canesi, L., Fabbri, R., Gallo, G., Vallotto, D., Marcomini, A., Pojana, G., 2010. Biomarkers in Myti- lus galloprovincialis exposed to suspensions of selected nanoparticles (nano carbon black, C60 fullerene, nano-TiO2, nano-SiO2). Aquat Toxicol, 100, 168-177. DOI:

Carreck, N.L., Andree, M., Brent, C.S., Cox-Foster, D., Dade, H.A., Ellis, J.D., Hatjina, F., van En- glesdorp, D., 2013. Standard methods for Apis mellifera anatomy and dissection. J Apicult Res, 52, 1-40. DOI:

Dabrunz, A., Duester, L., Prasse, C., Seitz, F., Rosenfeldt, R., Schilde, C., Schaumann, G.E., Schulz, R., 2011. Biological surface coating and molting inhibition as mechanisms of TiO2 nanoparticle toxicity in Daphnia magna. PLoS One, 6, e20112. DOI:

Ellman, G.L., Courtney, K.D., Andres, V., Featherstone, R.M., 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7, 88-95. DOI:

Farooqui, T., 2013. A potential link among biogenic amines-based pesticides, learning and memory, and colony collapse disorder: a unique hypothesis. Neurochem Int, 62, 122-136. DOI:

Garner, K. L., Suh, S., Lenihan, H. S., Keller, A. A., 2015. Species sensitivity distributions for engi- neered nanomaterials. Environ Sci Technol, 49, 5753-5759. DOI:

Gogos, A., Knauer, K., Bucheli, T. D. 2012. Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem, 60, 9781-9792. DOI:

Gottschalk, F., Sonderer, T., Scholz, R.W., Nowack, B., 2009. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol, 43, 9216-9222. DOI:

Guan, H., Chi, D., Yu, J., Li, X., 2008. A novel photodegradable insecticide: preparation, characte- rization and properties evaluation of nano-Imidacloprid Pesticide. Biochem Physiol, 92, 83-91. DOI:

Guan, H.-N., Chi, D.-F., Yu, J., Zhang, S.-Y., 2011. Novel photodegradable insecticide W/TiO(2)/ Avermectin nanocomposites obtained by polyelectrolytes assembly. Colloids Surf B Biointerfaces, 83, 148-154. DOI:

Habig, W.H., Pabst, M.J., Jakoby, W.B., 1974. Glutathione S-transferases, the first enzymatic step in mercapturic acid formation. J Biol Chem, 249, 7130-7139. DOI:

Halliwell, B., Gutteridge, J.M.C., 2007. Free radicals in biology and medicine. Oxford: Clarendon. Hellou, J., 2011. Behavioural ecotoxicology, an “early warning” signal to assess environmental quality. Environ Sci Poll Res, 18, 1-11. DOI:

Hladun, K.R., Smith, B.H., Mustard, J.A., Morton, R.R., Trumble, J.T., 2012. Selenium toxicity to honey bee (Apis mellifera L.). Pollinators: Effects on Behaviors and Survival. PLoS One, 7, e34137. IARC/WHO, 2010. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Carbon DOI:

Black, Titanium Dioxide, and Talc. Lyon: IARC.

Jackson, P., Jacobsen, N.R., Baun, A., Birkedal, R., Kühnel, D., Jensen, K.A., Vogel, U., Wallin, H., 2013. Bioaccumulation and ecotoxicity of carbonnanotubes. Chem Cent J, 7, 154. DOI:

Jemec, A., Drobne, D., Tišler, T., Sepčić, K., 2010. Biochemical biomarkers in environmental studies- lessons learnt from enzymes catalase, glutathione S-transferase and cholinesterase in two crustacean species. Environ Sci Poll Res, 17, 571-581. DOI:

Jemec, A., Tisler, T., Drobne, D., Sepčić, K., Jamnik, P., Ros, M., 2008. Biochemical biomarkers in chronically metal-stressed daphnids. Comp Biochem Physiol C Toxicol Pharmacol, 147, 61-68. Kah, M., Hofmann, T., 2014. Nanopesticide research: current trends and future priorities. Environ Int, 63, 224-235. DOI:

Kah, M., Beulke, S., Tiede, K., Hofmann, T., 2013. Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Crit Rev Environ Sci Tech, 43, 1823-1867. DOI:

Karczmar, A. G., 2010. Cholinesterases (ChEs) and the cholinergic system in ontogenesis and phylo- genesis, and non-classical roles of cholinesterases - A review. Chem-Biol Interact, 187, 34-43. DOI:

Keller, A., McFerran, S., Lazareva, A., Suh, S., 2013. Global life cycle releases of engineered nano- materials. J Nanoparticle Res, 15, 1692. DOI:

Kim, Y.H., Lee, S.H., 2013. Which acetylcholinesterase functions as the main catalytic enzyme in the Class Insecta? Insect Biochem Mol Biol, 43, 47-53. DOI:

Mesarič, T., Baweja, L., Drašler, B., Drobne, D., Makovec, D., Dušak, P., Dhawan, A., Sepčić, K., 2013. Effects of surface curvature and surface characteristics of carbon-based nanomaterials on the adsorption and activity of acetylcholinesterase. Carbon (N. Y.), 62, 222-232. DOI:

Mesarič, T., Gambardella, C., Milivojević, T., Faimali, M., Drobne, D., Falugi, C., Makovec, D., Jemec, A., Sepčić, K., 2015a. High surface adsorption properties of carbon-based nanomaterials are responsible for mortality, swimming inhibition, and biochemical responses in Artemia salina larvae. Aquat Toxicol, 163, 121-129. DOI:

Mesarič, T., Sepčić , K., Drobne, D., Makoveč, M., Faimali, M., Morgana, S., Falugi, C.,Gambardella, C., 2015b. Sperm exposure to carbon-based nanomaterials causes abnormalities in early deve- lopment of purple sea urchin (Paracentrotus lividus). Aquat Toxicol, 163, 158-166. DOI:

Milivojević, T., Glavan, G., Božič, J., Sepčić, K., Mesarič, T., Drobne, D., 2015. Neurotoxic potential of ingested ZnO nanomaterials on bees. Chemosphere, 120, 547-554. DOI:

Navarro, E., Baun, A., Behra, R., Hartmann, N. B., Filser, J., Miao, A. J., Quigg, A., Santschi, P. H., Sigg, L., 2008. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 17, 372-386. DOI:

Nielsen, H.D., Berry, L.S., Stone, V., Burridge, T.R., Fernandes, T.F., 2008. Interactions between carbon black nanoparticles and the brown algae Fucus serratus: Inhibition of fertilization and zygotic development. Nanotoxicology, 2, 88-97. DOI:

Paret, M.L., Palmateer, A.J., Knox, G.W., 2013a. Evaluation of a light-activated nanoparticle for- mulation of titanium dioxide with zinc for management of bacterial leaf spot on rosa ‘Noare’. Hortscience, 48, 189-192. DOI:

Paret, M.L., Vallad, G.E., Averett, D.R., Jones, J.B., Olson, S.M., 2013b. Photocatalysis: effect of light activated nanoscale formulations of TiO2 on Xanthomona sperforans and control of bacterial spot of tomato. Phytopathology,103, 228-236. DOI:

Perez, N., Pey, J., Cusack, M., Reche, C., Querol, X., Alastuey, A., Viana, M., 2010. Variability of Particle Number, Black Carbon, and PM10, PM2.5, and PM1 Levels and Speciation: Influence of Road Traffic Emissions on Urban Air Quality. Aerosol Sci Technol, 44, 487-499. DOI:

Romih, T., Jemec, A., Novak, S., Vaccari, L., Ferraris, P., Šimon, M., Kos, M., Susič, R., Kogej, K., Zupanc, J., Drobne, D., 2015. FTIR microscopy reveals distinct biomolecular profile of crustacean digestive glands upon subtoxic exposure to ZnO nanoparticles. Nanotoxicology, 7, 1-9. DOI:

Sanchez-Bayo, F., Goulson, D., Pennacchio, F., Nazzi, F., Goka, K., Desneux, N., 2016. Are bee diseases linked to pesticides?–A brief review. Environ. Int.; 89–90: 7–11. DOI:

Screening Assessment for the Challenge, Carbon Black, Chemical Abstracts Service Regi- stry Number, 1333-86-4 (2013). Available online: asp?lang=En&n=2cf34283-1.

Søvik, E., Perry, C., LaMora, A., Barron, A.B., Ben-Shahar, Y., 2015. Negative impact of manganese on honeybee foraging. Biol Lett, 11, 20140989. DOI:

van Engelsdorp, D., Evans, J.D., Saegerman, C., Mullin, C., Haubruge, E., Nguyen, B.K., Frazier, M., Frazier, J., Cox-Foster, D., Chen, Y., Underwood, R., Tarpy, D.R., Pettis, J.S., 2009. Colony collapse disorder: a descriptive study. PLoS One 4, e6481. DOI:

Xia, X.R., Monteiro-Riviere, N.A., Mathur, S., Song, X., Xiao, L., Oldenberg, S.J., Fadeel, B., Riviere, J.E., 2011. Mapping the surface adsorption forces on nanomaterials in biological systems. ACS Nano, 5, 9074-9081. DOI:






Original Research Paper

How to Cite

Jemec, A., Milivojević, T., Drobne, D., Sepčić, K., & Glavan, G. (2016). No chronic effects on biochemical biomarkers, feeding and survival of carnolian honeybees (Apis mellifera carnica) after exposure to nanosized carbon black and titanium dioxide. Acta Biologica Slovenica, 59(1), 45-55.

Similar Articles

1-10 of 29

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)