No chronic effects on biochemical biomarkers, feeding and survival of carnolian honeybees (Apis mellifera carnica) after exposure to nanosized carbon black and titanium dioxide

Authors

  • Anita Jemec
  • Tamara Milivojević
  • Damjana Drobne
  • Kristina Sepčić
  • Gordana Glavan

DOI:

https://doi.org/10.14720/abs.59.1.15698

Keywords:

nanopesticide, carbon black nanomaterial, titanium dioxide nanomaterial, acetylcholinesterase, glutathione S-transferase, catalase, feeding behaviour

Abstract

Honeybees (Apis mellifera) are important pollinators threatened by environmental pollution, plan protection products and other potential contaminants. Due to an extensive predicted use of engineered nanomaterials (NMs) in agriculture the impact on honeybees should be investigated. We studied the 10-days chronic dietary effect of carbon black (CB) and titanium dioxide (TiO2) NMs on the antioxidant activities, cholinergic function, feeding behaviour and survival of honeybees. Exposure of honeybees Apis mellifera carnica to TiO2 and CB NMs (1 mg ml-1) did not affect the feeding and survival. No alteration of catalase, acetylcholinesterase and glutathione S-transferase enzymatic activity was noticed in the brain of honeybees, indicating that TiO2 and CB NMs at the tested exposure dose had no adverse effects on honeybees. Currently predicted environmental concentrations for TiO2 and CB NMs are significantly lower than the concentration tested in the current study. Based on our findings we conclude that the potential use of TiO2 and CB NMs in agriculture is currently safe for honeybees at the tested concentration level and presents potential advantages compared to other NMs with known toxic potential.

References

Aruoja, V., Dubourguier, H., Kasemets, K., Kahru A., 2009. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ, 407, 1461-1468. DOI: https://doi.org/10.1016/j.scitotenv.2008.10.053

Barata, C., Varo, I., Navarro, J.C., Arun, S., Porte C., 2005. Antioxidant enzyme activities and lipid peroxidation in the freshwater cladoceran Daphnia magna exposed to redox cycling compounds. Comp Biochem Physiol, 140, 175-186. DOI: https://doi.org/10.1016/j.cca.2005.01.013

Bondarenko, O.M., Heinlaan, M., Sihtmäe, M., Ivask, A., Kurvet, I., Jemec, A., Mannerström, M., Heinonen, T., Rekulapelly, R., Singh, S., Zou, J., Pyykkö, I., Drobne, D., Kahru, A., 2016. In vi- tro (eco) toxicity screening and hazard grouping of seven engineered nanomaterials: FP7 project NANOVALID. Nanotoxicology, accepted manuscript. DOI: https://doi.org/10.1080/17435390.2016.1196251

Burden, C.M., Elmore, C., Hladun, K.R., Trumble, J.T., Smith, B.H., 2016. Acute exposure to selenium disrupts associative conditioning and long-term memory recall in honey bees (Apis mellifera). Ecotoxicol Environ Saf, 127, 71-79. DOI: https://doi.org/10.1016/j.ecoenv.2015.12.034

Cao, Y. S., Chen, J. X., Wang, Y. L., Liang, J., Chen, L. H., and Lu, Y. T., 2005. HPLC/UV analysis of chlorfenapyrresidues in cabbage and soil to study the dynamics of different formulations. Sci Total Environ, 350, 38-46. DOI: https://doi.org/10.1016/j.scitotenv.2005.01.031

Canesi, L., Fabbri, R., Gallo, G., Vallotto, D., Marcomini, A., Pojana, G., 2010. Biomarkers in Myti- lus galloprovincialis exposed to suspensions of selected nanoparticles (nano carbon black, C60 fullerene, nano-TiO2, nano-SiO2). Aquat Toxicol, 100, 168-177. DOI: https://doi.org/10.1016/j.aquatox.2010.04.009

Carreck, N.L., Andree, M., Brent, C.S., Cox-Foster, D., Dade, H.A., Ellis, J.D., Hatjina, F., van En- glesdorp, D., 2013. Standard methods for Apis mellifera anatomy and dissection. J Apicult Res, 52, 1-40. DOI: https://doi.org/10.3896/IBRA.1.52.4.03

Dabrunz, A., Duester, L., Prasse, C., Seitz, F., Rosenfeldt, R., Schilde, C., Schaumann, G.E., Schulz, R., 2011. Biological surface coating and molting inhibition as mechanisms of TiO2 nanoparticle toxicity in Daphnia magna. PLoS One, 6, e20112. DOI: https://doi.org/10.1371/journal.pone.0020112

Ellman, G.L., Courtney, K.D., Andres, V., Featherstone, R.M., 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7, 88-95. DOI: https://doi.org/10.1016/0006-2952(61)90145-9

Farooqui, T., 2013. A potential link among biogenic amines-based pesticides, learning and memory, and colony collapse disorder: a unique hypothesis. Neurochem Int, 62, 122-136. DOI: https://doi.org/10.1016/j.neuint.2012.09.020

Garner, K. L., Suh, S., Lenihan, H. S., Keller, A. A., 2015. Species sensitivity distributions for engi- neered nanomaterials. Environ Sci Technol, 49, 5753-5759. DOI: https://doi.org/10.1021/acs.est.5b00081

Gogos, A., Knauer, K., Bucheli, T. D. 2012. Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem, 60, 9781-9792. DOI: https://doi.org/10.1021/jf302154y

Gottschalk, F., Sonderer, T., Scholz, R.W., Nowack, B., 2009. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol, 43, 9216-9222. DOI: https://doi.org/10.1021/es9015553

Guan, H., Chi, D., Yu, J., Li, X., 2008. A novel photodegradable insecticide: preparation, characte- rization and properties evaluation of nano-Imidacloprid Pesticide. Biochem Physiol, 92, 83-91. DOI: https://doi.org/10.1016/j.pestbp.2008.06.008

Guan, H.-N., Chi, D.-F., Yu, J., Zhang, S.-Y., 2011. Novel photodegradable insecticide W/TiO(2)/ Avermectin nanocomposites obtained by polyelectrolytes assembly. Colloids Surf B Biointerfaces, 83, 148-154. DOI: https://doi.org/10.1016/j.colsurfb.2010.11.013

Habig, W.H., Pabst, M.J., Jakoby, W.B., 1974. Glutathione S-transferases, the first enzymatic step in mercapturic acid formation. J Biol Chem, 249, 7130-7139. DOI: https://doi.org/10.1016/S0021-9258(19)42083-8

Halliwell, B., Gutteridge, J.M.C., 2007. Free radicals in biology and medicine. Oxford: Clarendon. Hellou, J., 2011. Behavioural ecotoxicology, an “early warning” signal to assess environmental quality. Environ Sci Poll Res, 18, 1-11. DOI: https://doi.org/10.1007/s11356-010-0367-2

Hladun, K.R., Smith, B.H., Mustard, J.A., Morton, R.R., Trumble, J.T., 2012. Selenium toxicity to honey bee (Apis mellifera L.). Pollinators: Effects on Behaviors and Survival. PLoS One, 7, e34137. IARC/WHO, 2010. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Carbon DOI: https://doi.org/10.1371/journal.pone.0034137

Black, Titanium Dioxide, and Talc. Lyon: IARC.

Jackson, P., Jacobsen, N.R., Baun, A., Birkedal, R., Kühnel, D., Jensen, K.A., Vogel, U., Wallin, H., 2013. Bioaccumulation and ecotoxicity of carbonnanotubes. Chem Cent J, 7, 154. DOI: https://doi.org/10.1186/1752-153X-7-154

Jemec, A., Drobne, D., Tišler, T., Sepčić, K., 2010. Biochemical biomarkers in environmental studies- lessons learnt from enzymes catalase, glutathione S-transferase and cholinesterase in two crustacean species. Environ Sci Poll Res, 17, 571-581. DOI: https://doi.org/10.1007/s11356-009-0112-x

Jemec, A., Tisler, T., Drobne, D., Sepčić, K., Jamnik, P., Ros, M., 2008. Biochemical biomarkers in chronically metal-stressed daphnids. Comp Biochem Physiol C Toxicol Pharmacol, 147, 61-68. Kah, M., Hofmann, T., 2014. Nanopesticide research: current trends and future priorities. Environ Int, 63, 224-235. DOI: https://doi.org/10.1016/j.cbpc.2007.07.006

Kah, M., Beulke, S., Tiede, K., Hofmann, T., 2013. Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Crit Rev Environ Sci Tech, 43, 1823-1867. DOI: https://doi.org/10.1080/10643389.2012.671750

Karczmar, A. G., 2010. Cholinesterases (ChEs) and the cholinergic system in ontogenesis and phylo- genesis, and non-classical roles of cholinesterases - A review. Chem-Biol Interact, 187, 34-43. DOI: https://doi.org/10.1016/j.cbi.2010.03.009

Keller, A., McFerran, S., Lazareva, A., Suh, S., 2013. Global life cycle releases of engineered nano- materials. J Nanoparticle Res, 15, 1692. DOI: https://doi.org/10.1007/s11051-013-1692-4

Kim, Y.H., Lee, S.H., 2013. Which acetylcholinesterase functions as the main catalytic enzyme in the Class Insecta? Insect Biochem Mol Biol, 43, 47-53. DOI: https://doi.org/10.1016/j.ibmb.2012.11.004

Mesarič, T., Baweja, L., Drašler, B., Drobne, D., Makovec, D., Dušak, P., Dhawan, A., Sepčić, K., 2013. Effects of surface curvature and surface characteristics of carbon-based nanomaterials on the adsorption and activity of acetylcholinesterase. Carbon (N. Y.), 62, 222-232. DOI: https://doi.org/10.1016/j.carbon.2013.05.060

Mesarič, T., Gambardella, C., Milivojević, T., Faimali, M., Drobne, D., Falugi, C., Makovec, D., Jemec, A., Sepčić, K., 2015a. High surface adsorption properties of carbon-based nanomaterials are responsible for mortality, swimming inhibition, and biochemical responses in Artemia salina larvae. Aquat Toxicol, 163, 121-129. DOI: https://doi.org/10.1016/j.aquatox.2015.03.014

Mesarič, T., Sepčić , K., Drobne, D., Makoveč, M., Faimali, M., Morgana, S., Falugi, C.,Gambardella, C., 2015b. Sperm exposure to carbon-based nanomaterials causes abnormalities in early deve- lopment of purple sea urchin (Paracentrotus lividus). Aquat Toxicol, 163, 158-166. DOI: https://doi.org/10.1016/j.aquatox.2015.04.012

Milivojević, T., Glavan, G., Božič, J., Sepčić, K., Mesarič, T., Drobne, D., 2015. Neurotoxic potential of ingested ZnO nanomaterials on bees. Chemosphere, 120, 547-554. DOI: https://doi.org/10.1016/j.chemosphere.2014.07.054

Navarro, E., Baun, A., Behra, R., Hartmann, N. B., Filser, J., Miao, A. J., Quigg, A., Santschi, P. H., Sigg, L., 2008. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 17, 372-386. DOI: https://doi.org/10.1007/s10646-008-0214-0

Nielsen, H.D., Berry, L.S., Stone, V., Burridge, T.R., Fernandes, T.F., 2008. Interactions between carbon black nanoparticles and the brown algae Fucus serratus: Inhibition of fertilization and zygotic development. Nanotoxicology, 2, 88-97. DOI: https://doi.org/10.1080/17435390802109185

Paret, M.L., Palmateer, A.J., Knox, G.W., 2013a. Evaluation of a light-activated nanoparticle for- mulation of titanium dioxide with zinc for management of bacterial leaf spot on rosa ‘Noare’. Hortscience, 48, 189-192. DOI: https://doi.org/10.21273/HORTSCI.48.2.189

Paret, M.L., Vallad, G.E., Averett, D.R., Jones, J.B., Olson, S.M., 2013b. Photocatalysis: effect of light activated nanoscale formulations of TiO2 on Xanthomona sperforans and control of bacterial spot of tomato. Phytopathology,103, 228-236. DOI: https://doi.org/10.1094/PHYTO-08-12-0183-R

Perez, N., Pey, J., Cusack, M., Reche, C., Querol, X., Alastuey, A., Viana, M., 2010. Variability of Particle Number, Black Carbon, and PM10, PM2.5, and PM1 Levels and Speciation: Influence of Road Traffic Emissions on Urban Air Quality. Aerosol Sci Technol, 44, 487-499. DOI: https://doi.org/10.1080/02786821003758286

Romih, T., Jemec, A., Novak, S., Vaccari, L., Ferraris, P., Šimon, M., Kos, M., Susič, R., Kogej, K., Zupanc, J., Drobne, D., 2015. FTIR microscopy reveals distinct biomolecular profile of crustacean digestive glands upon subtoxic exposure to ZnO nanoparticles. Nanotoxicology, 7, 1-9. DOI: https://doi.org/10.3109/17435390.2015.1078853

Sanchez-Bayo, F., Goulson, D., Pennacchio, F., Nazzi, F., Goka, K., Desneux, N., 2016. Are bee diseases linked to pesticides?–A brief review. Environ. Int.; 89–90: 7–11. DOI: https://doi.org/10.1016/j.envint.2016.01.009

Screening Assessment for the Challenge, Carbon Black, Chemical Abstracts Service Regi- stry Number, 1333-86-4 (2013). Available online: http://www.ec.gc.ca/ese-ees/default. asp?lang=En&n=2cf34283-1.

Søvik, E., Perry, C., LaMora, A., Barron, A.B., Ben-Shahar, Y., 2015. Negative impact of manganese on honeybee foraging. Biol Lett, 11, 20140989. DOI: https://doi.org/10.1098/rsbl.2014.0989

van Engelsdorp, D., Evans, J.D., Saegerman, C., Mullin, C., Haubruge, E., Nguyen, B.K., Frazier, M., Frazier, J., Cox-Foster, D., Chen, Y., Underwood, R., Tarpy, D.R., Pettis, J.S., 2009. Colony collapse disorder: a descriptive study. PLoS One 4, e6481. DOI: https://doi.org/10.1371/journal.pone.0006481

Xia, X.R., Monteiro-Riviere, N.A., Mathur, S., Song, X., Xiao, L., Oldenberg, S.J., Fadeel, B., Riviere, J.E., 2011. Mapping the surface adsorption forces on nanomaterials in biological systems. ACS Nano, 5, 9074-9081. DOI: https://doi.org/10.1021/nn203303c

Downloads

Published

01.07.2016

Issue

Section

Original Research Paper

How to Cite

Jemec, A., Milivojević, T., Drobne, D., Sepčić, K., & Glavan, G. (2016). No chronic effects on biochemical biomarkers, feeding and survival of carnolian honeybees (Apis mellifera carnica) after exposure to nanosized carbon black and titanium dioxide. Acta Biologica Slovenica, 59(1), 45-55. https://doi.org/10.14720/abs.59.1.15698

Similar Articles

1-10 of 29

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)