The interactions between UV radiation, drought and selenium in different buckwheat species
DOI:
https://doi.org/10.14720/abs.62.1.15736Keywords:
buckwheat, UV radiation, drought, seleniumAbstract
Here we summarise the outcomes on biochemical response and growth of buckwheat with respect to UV radiation, drought and selenium, as well as their interactions. Buckwheats are taxonomically and morphologically very diverse. They have been subjected to more or less intensive breeding, which results in higher susceptibility to environmental constraints including drought and also in different potential to cope and exploit UV radiation. The responses of different buckwheats to UV, drought and their combination differed in different species. Selenium treatment may mitigate negative effects of environmental constraints on buckwheat. Regarding the production of UV absorbing compounds, buckwheats mainly positively respond to UV dose. Ca druses in buckwheat seem to be important in affecting UV penetration.
References
Alexieva, V., Mapelli, S.S., Karanov, E., 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell and Environment 24, 1337-1344. DOI: https://doi.org/10.1046/j.1365-3040.2001.00778.x
Barnes, P.W., Tobler, M.A., Keefover-Ring, K., Flint, S.D., Barkley, A.E., Ryel, R.J., Lindroth, R.L., 2016. Rapid modulation of ultraviolet shielding in plants is influenced by solar ultraviolet radiation and linked to alterations in flavonoids. Plant, Cell and Environment 39, 222-230. DOI: https://doi.org/10.1111/pce.12609
Björn, L.O., 2015. On the history of phyto-photo UV science (not to be left in skoto toto and silence). Plant Physiology and Biochemistry 93, 3-8. DOI: https://doi.org/10.1016/j.plaphy.2014.09.015
Bonafaccia, G., Marocchini, M., Kreft, I., 2003. Composition and technological properties of the flour and bran from common and tartary buckwheat. Food Chemistry 80, 9-15. DOI: https://doi.org/10.1016/S0308-8146(02)00228-5
Breznik, B., Germ, M., Gaberščik, A., Kreft, I., 2005a. Combined effects of elevated UV-B radiation and the addition of selenium on common (Fagopyrum esculentum Moench) and tartary [Fagopyrum tataricum (L) Gaertn.] buckwheat. Photosynthetica 43, 583-589. DOI: https://doi.org/10.1007/s11099-005-0091-1
Breznik, B., Gaberščik, A., Germ, M., Kreft, I., 2005b. The combined effects of enhanced UV-B radiation and selenium on common buckwheat (Fagopyrum esculentum Moench) habitus. Fagopyrum: novosti o ajdi 22, 83-87.
Breznik, B., Germ, M., Kreft, I., Gaberščik, A., 2009. Crop responses to enhanced UV-B radiation. In: Singh, S.N. (ed.), Climate change and crops, (Environmental science and engineering). Springer, Berlin, pp. 269-281. DOI: https://doi.org/10.1007/978-3-540-88246-6_12
Caldwell, M.M., Björn, L.O., Bornman, J.F., Flint, S.D., Kulandaivelu, G., Teramura, A.H., Tevini, M., 1998. Effects of increased solar ultraviolet radiation on terrestrial ecosystems. Journal of Photochemistry and Photobiology B: Biology 46, 40-52. DOI: https://doi.org/10.1016/S1011-1344(98)00184-5
Chipperfield, M.P., Dhomse, S.S., Feng, W., McKenzie, R.L., Velders, G.J.M., Pyle, J.A., 2015. Quantifying the ozone and ultraviolet benefits already achieved by the Montreal Protocol. Nature Communications 6, 7233. DOI: https://doi.org/10.1038/ncomms8233
Comont, D., Winters, A., Gwynn-Jones, D., 2012. Acclimation and interaction between drought and elevated UV-B in A. thaliana: Differences in response over treatment, recovery and reproduction. Ecology and Evolution 2(11), 2695-2709. DOI: https://doi.org/10.1002/ece3.387
Ekelund, N.G.A., Danilov, R.A., 2001 The influence of selenium on photosynthesis and “light-enhanced dark respiration” (LEDR) in the flagellate Euglena gracilis after exposure to ultraviolet radiation. Aquatic Science 63, 457-465. DOI: https://doi.org/10.1016/S1011-1344(00)00029-4
The European Commission (2010) Water scarcity and drought in the European Union. The European Commission. http://ec.europa.eu/environment/pubs/pdf/factsheets/water_scarcity.pdf
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., Basra, S.M.A., 2009. Plant drought stress: effects, mechanisms and management. Agronomy Sustainable Development.29, 185-212. DOI: https://doi.org/10.1051/agro:2008021
Fabjan, N., Rode, J., Košir, I.J., Wang, Z., Zhang, Z., Kreft, I., 2003. Tartary buckwheat (Fagopyrum tataricum Gaertn.) as a source of dietary rutin and quercitrin. Journal of Agricultural and Food Chemistry 51(22), 6452-6455. DOI: https://doi.org/10.1021/jf034543e
Gaberščik, A., Novak, M., Trošt, T., Mazej, Z., Germ, M., Björn, L.O., 2001. The influence of enhanced UV-B radiation on the spring geophyte Pulmonaria officinalis. Plant Ecology 154, 51-56. DOI: https://doi.org/10.1007/978-94-017-2892-8_5
Gaberščik, A., Vončina, M., Trošt Sedej, T., Germ, M., Björn, L.O., 2002. Growth and production of buckwheat (Fagopyrum esculentum) treated with reduced, ambient, and enhanced UV-B radiation. Journal of Photochemistry and Photobiology B: Biology 66(1), 30-36. DOI: https://doi.org/10.1016/S1011-1344(01)00272-X
Gal, A., Brumfeld, V., Weiner, S., Addadi, L., Oron, D., 2012. Certain biominerals in leaves function as light scatterers, Advanced Materials 24, 77-83. DOI: https://doi.org/10.1002/adma.201104548
Germ, M., Breznik, B., Dolinar, N., Kreft, I., Gaberščik, A., 2013. The combined effect of water limitation and UV-B radiation on common and Tartary buckwheat. Cereal Research Communication 41(1), 97-105. DOI: https://doi.org/10.1556/CRC.2012.0031
Germ, M., Gaberščik, A., 2016. The effect of environmental factors on buckwheat. In: Zhou, M., Kreft, I. (eds.). Molecular breeding and nutritional aspects of buckwheat. London [etc.]: Academic Press is an imprint of Elsevier. cop., pp. 273-282. DOI: https://doi.org/10.1016/B978-0-12-803692-1.00021-3
Golob, A., Kavčič, J., Stibilj, V., Gaberščik, A., Vogel-Mikuš, K., Germ, M., 2017a. The effect of selenium and UV radiation on leaf traits and biomass production in Triticum aestivum L. Ecotoxicology and Environmental Safety 136, 142-149. DOI: https://doi.org/10.1016/j.ecoenv.2016.11.007
Golob, A., Stibilj, V., Turk, J., Kreft, I., Germ, M., 2017b. Impact of UV radiation and selenium on two buckwheat species. Acta biologica slovenica 60(2), 29-39.
Golob, A., Stibilj, V., Kreft, I., Vogel-Mikuš, K., Gaberščik, A., Germ, M., 2018a. Selenium treatment alters the effects of UV radiation on chemical and production parameters in hybrid buckwheat. Acta Agriculturae Scandinavica B. S. P. 68(1), 5-15. DOI: https://doi.org/10.1080/09064710.2017.1349172
Golob, A., Stibilj, V., Nečemer, M., Kump, P., Kreft, I., Hočevar, A., Gaberščik, A., Germ, M., 2018b. Calcium oxalate druses affect leaf optical properties in selenium-treated Fagopyrum tataricum. Journal of photochemistry and photobiology. B, Biology 180, 51-55. DOI: https://doi.org/10.1016/j.jphotobiol.2018.01.018
Hasanuzzaman, M., Nahar, K., Fujita, M., 2014. Silicon and selenium: two vital trace elements that confer abiotic stress tolerance to plants. In: Ahmad, P. (ed.), Emerging Technologies and Management of Crop Stress Tolerance 1, pp. 377-422. DOI: https://doi.org/10.1016/B978-0-12-800876-8.00016-3
Halbrecq, B., Romedenne, P., Ledent, J.F., 2005. Evolution of flowering, ripening and seed set in buckwheat (Fagopyrum esculentum Moench): Quantitative analysis. European Journal of Agronomy 23, 209–224. DOI: https://doi.org/10.1016/j.eja.2004.11.006
Hartikainen, H., Xue, T., Piironen, V., 2000. Selenium as an antioxidant and pro-oxidant in ryegrass. Plant and Soil 225, 193-200. DOI: https://doi.org/10.1023/A:1026512921026
Hideg, É., Strid, Å., 2017. The effects of UV-B on the Biochemistry and Metabolism of plants. In: UV-B Radiation and Plant Life: Molecular Biology to Ecology. CABI Publishers, Wallingford, UK, pp. 90–110. DOI: https://doi.org/10.1079/9781780648590.0090
Hofmann, R.W., Campbell, B.D., Bloor, S.J., Swinny, E.E., Markham, K.R., Ryan, K.G., Fountain, D.W., 2003. Responses to UV-B radiation in Trifolium repens L. - physiological links to plant productivity and water avail-ability. Plant, Cell & Environment 26, 603–612. DOI: https://doi.org/10.1046/j.1365-3040.2003.00996.x
Jansen, M.A.K., Coffey, A.M., Prinsen, S., 2012. UV-B induced morphogenesis. Four players or a quartet? Plant Signaling & Behavior 7, 1185-1187. DOI: https://doi.org/10.4161/psb.21260
Huang, X., Yao, J., Zhao, Y., Xie, D., Jiang, X., Xu, Z., 2016. Efficient Rutin and Quercetin Biosynthesis through Flavonoids-Related Gene Expression in Fagopyrum tataricum Gaertn. Hairy Root Cultures with UV-B Irradiation. Frontiers in Plant Science 7, 63. DOI: https://doi.org/10.3389/fpls.2016.00063
He, H., Veneklaas, E.J., Kuo, J., Lambers, H., 2014. Physiological and ecological significance of biomineralization in plants. Trends in Plant Science 19, 166-174. DOI: https://doi.org/10.1016/j.tplants.2013.11.002
Jin., P., Duarte, C.M., Agustí, S., 2017. Contrasting Responses of Marine and Freshwater Photosynthetic Organisms to UVB Radiation: A Meta-Analysis Frontiers in Marine Science 4, 45. DOI: https://doi.org/10.3389/fmars.2017.00045
Jovanović, Z.S., Milosević, J.D., Radović, S.R., 2006. Antioxidative Enzymes in the Response of Buckwheat (Fagopyrum esculentum Moench) to Ultraviolet B Radiation. Journal of Agricultural and Food Chemistry 54, 9472-9478. DOI: https://doi.org/10.1021/jf061324v
Kakani, V.G., Reddy, K.R., Zhao, D., Sailaja, K., 2003. Field crop responses to ultraviolet-B radiation: a review. Agricultural and Forest Meteorology 120, 191-218. DOI: https://doi.org/10.1016/j.agrformet.2003.08.015
Kataria, S., Guruprasad, K.N., 2014. Exclusion of solar UV components improves growth and performance of Amaranthus tricolor varieties. Scientia Horticulture 174, 36-45. DOI: https://doi.org/10.1016/j.scienta.2014.05.003
Kishore, G., Ranjan, S., Pandey, A., Gupta, S., 2010. Influence of Altitudinal Variation on the Antioxidant Potential of Tartary Buckwheat of Western Himalaya. Food Science and Biotechnology 19, 1355-1363. DOI: https://doi.org/10.1007/s10068-010-0193-9
Kreft, S., Štrukelj, B., Gaberščik, A., Kreft, I., 2002. Rutin in buckwheat herbs ˇgrown at different UV-B radiation level: comparison of two UV spectrophotometric and an HPLC method. Journal of Experimental Botany 53, 1801-1804. DOI: https://doi.org/10.1093/jxb/erf032
Kreft, I., Fabjan, N., Yasumoto, K., 2006. Rutin content in buckwheat (Fagopyrum esculentum Moench) food materials and products. Food Chemistry 98, 508-512. DOI: https://doi.org/10.1016/j.foodchem.2005.05.081
Kulandaivelu, G., Lingakumar, K., Premkumar, A., 1997. UV-B radiation. In: Prasad, M.N.V. (ed), Plant Ecophysiology, John Wiley & Sons, pp. 41-60.
Kuo-Huang, L.L., Ku, M.S.B., Franceschi, V.R., 2007. Correlations between calcium oxalate crystals and photosynthetic activities in palisade cells of shade-adapted Peperomia glabella. Botanical Studies 48, 155-164.
Larcher, W., 2003. Physiological Plant Ecology: Ecophysiology and Stress Physiology of functional groups. 4th Edition, Springer, New York, 513p.
Lesk, C., Rowhani, P., Ramankutty, N., 2016. Influence of extreme weather disasters on global crop production. Nature 529, 84-87. DOI: https://doi.org/10.1038/nature16467
Li, S., Zhang, H., 2001. Advances in the development of functional foods from buckwheat. Critical Reviews in Food Science and Nutrition 41, 451-464. DOI: https://doi.org/10.1080/20014091091887
Kumar, A., Tomer, V., Kaur, A., Kumar, V., Gupta, K., 2018. Millets: a solution to agrarian and nutritional challenges. Agriculture and Food Security 7, 31. DOI: https://doi.org/10.1186/s40066-018-0183-3
Mimmo, T., Tiziani, R., Valentinuzzi, F., Lucini, L., Nicoletto, C., Sambo, P., Scampicchio, M., Pii, Y., Cesco, S., 2017. Selenium Biofortification in Fragaria × ananassa: Implications on Strawberry Fruits Quality, Content of Bioactive Health Beneficial Compounds and Metabolomic Profile. DOI: https://doi.org/10.3389/fpls.2017.01887
Frontiers in Plant Science 8, 1887. Nakabayashi, R., Yonekura-Sakakibara, K., Urano, K., Suzuki, M., Yamada, Y., Nishizawa, T., Matsuda,
F., Kojima, M., Sakakibara, H., Shinozaki, K., Michael, A.J., Tohge, T., Yamazaki, M., Saito, K., 2014. Enhancement of oxidative and drought tolerance in Arabidopsis by over accumulation of antioxidant flavonoids. The Plant Journal 77, 367-379. DOI: https://doi.org/10.1111/tpj.12388
Nawaz, F., Ashraf, M.Y., Ahmad, R., Waraich, E.A., Shabbir, R.N., Bukhari, M.A., 2015. Supplemental selenium improves wheat grain yield and quality through alternations in biochemical processes under normal and water deficit. Food Chemistry 175, 350-357. DOI: https://doi.org/10.1016/j.foodchem.2014.11.147
Ohnishi, O., 1998. Search for the wild ancestor of buckwheat. III. The wild ancestor or cultivated common buckwheat, and of Tartary buckwheat. Economic Botany 52(2), 123-133. DOI: https://doi.org/10.1007/BF02861199
Ožbolt, L., Kreft, S., Kreft, I., Germ, M., Stibilj, V., 2008. Distribution of selenium and phenolics in buckwheat plants grown from seeds soaked in Se solution and under different levels of UV-B radiation. Food Chemistry 110, 691-696. DOI: https://doi.org/10.1016/j.foodchem.2008.02.073
Prado, F.E., Rosa, M., Prado, C., Podazza, G., Interdonato, R., González, J.A., Hilal, M., 2012. UV-B Radiation, Its Effects and Defense Mechanisms in Terrestrial Plants. Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change pp. 57-83. DOI: https://doi.org/10.1007/978-1-4614-0815-4_3
Regvar, M., Bukovnik, U., Likar, M., Kreft, I., 2012. UV-B radiation affects flavonoids and fungal colonisation in Fagopyrum esculentum and F. tataricum. Central European Journal of Biology 7(2), 275-283. DOI: https://doi.org/10.2478/s11535-012-0017-4
Ren, J., Dai, W., Xuan, Z., Yao, Y., Korpelainen, H., Li, C., 2007. The effect of drought and enhanced UV-B radiation on the growth and physiological traits of two contrasting poplar species. Forest Ecology and Management 239(1), 112-119. DOI: https://doi.org/10.1016/j.foreco.2006.11.014
Rodríguez-Calzada, T., Qian, M., Strid, Å., Neugart, S., Schreiner, M., Torres-Pacheco, I., GuevaraGonzález, R.G., 2019. Effect of UV-B radiation on morphology, phenolic compound production, gene expression, and subsequent drought stress responses in chili pepper (Capsicum annuum L.). DOI: https://doi.org/10.1016/j.plaphy.2018.06.025
Plant Physiology and Biochemistry 134, 94-102.
Rozema, J., Bjorn, L.O., Bornman, J.F., Gaberšcik, A., Hader, D.P., Trošt, T., Germ, M., Klisch, M., Groniger, A., Sinha, R.P., Lebert, M., He, Y.Y., Buffoni-Hall, R., de Bakker, N.V., van de Staaij,
J., Meijkamp, B.B., 2002. The role of UV-B radiation in aquatic and terrestrial ecosystems – an experimental and functional analysis of the evolution of UV-absorbing compounds. Journal of Photochemistry and Photobiology B: Biology 66, 2-12. DOI: https://doi.org/10.1016/S1011-1344(01)00269-X
Runeckles, C.V., Krupa, V.S., 1994. The impact of UV-B radiation and ozone in terrestrial vegetation. Environmental Pollution 83, 191-213. DOI: https://doi.org/10.1016/0269-7491(94)90035-3
Saha, D., Gowda, M.V.C., Arya, L, Verma, M., Bansal, K.C., 2016. Genetic and genomic resources of small millets. Critical Reviews in Plant Sciences 35, 56-79. DOI: https://doi.org/10.1080/07352689.2016.1147907
Santhosh, B., Narender Reddy, S., Prayaga, L., 2017. Physiological attributes of sunflower (Helianthus annuus L.) as influenced by moisture regimes. Green Farming 3, 680-683.
Sangtarash, M.H., Qaderi, M.M., Chinnappa, C.C., Reid, D.M., 2009. Differential responses of two Stellaria longipes ecotypes to ultraviolet-B radiation and drought stress. Flora - Morphology, Distribution, Functional Ecology of Plants 204, 593-603. DOI: https://doi.org/10.1016/j.flora.2008.08.004
Sebastian, A., Kumari, R., Kiran, B.R., Prasad, M.N., 2018. Ultraviolet B induced bioactive changes of enzymatic and non-enzymatic antioxidants and lipids in Trigonella foenum-graecum L. (Fenugreek). The EuroBiotech Journal 2(1), 64-71. DOI: https://doi.org/10.2478/ebtj-2018-0010
Sieprawska, A., Kornaś, A., Filek, M., 2015. Involvement of selenium in protective mechanisms of plants under environmental stress conditions – Review. Acta Biologica Cracoviensia Series Botanica 57(1), 9-20. DOI: https://doi.org/10.1515/abcsb-2015-0014
Shen, X., Dong, Z., Chen, Y., 2015. Drought and UV-B radiation effect on photosynthesis and antioxidant parameters in soybean and maize. Acta Physiologiae Plantarum 37, 25. DOI: https://doi.org/10.1007/s11738-015-1778-y
Schirmer, M., Höchstötter, A., Jekle, M., Arendt, E., Becker, T., 2013. Physicochemical and morphological characterization of different starches with variable amylose/amylopectin ratio. Food Hydrocolloids 32, 52-63. DOI: https://doi.org/10.1016/j.foodhyd.2012.11.032
Suzuki, T., Honda, Y., Mukasa, Y., 2005. Effects of UV-B radiation, cold and desiccation stress on rutin concentration and rutin glucosidase activity in tartary buckwheat (Fagopyrum tataricum) leaves. Plant Science 168, 1303-1307. DOI: https://doi.org/10.1016/j.plantsci.2005.01.007
Smrkolj, P., Stibilj, V., Kreft, I., Germ, M., 2006. Selenium species in buckwheat cultivated with foliar addition of Se(VI) and various levels of UV-B radiation. Food chemistry 96, 675-681. DOI: https://doi.org/10.1016/j.foodchem.2005.05.002
Suchar, V.A., Robberecht, R., 2016. Integration and scaling of UV-B radiation effects on plants:from molecular interactions to whole plant responses. Ecology and Evolution 6(14), 4866–4884. DOI: https://doi.org/10.1002/ece3.2064
Suzuki, T., Morishita, T., Kim, S.J., Park, S.U., Woo, S.H., Noda, T., Takigawa, S., 2015. Physiological Roles of Rutin in the Buckwheat. Plant. Japan Agricultural Research Quarterly: JARQ 49(1), 37-43. DOI: https://doi.org/10.6090/jarq.49.37
Tian, X.R., Lei, Y.B., 2007. Physiological responses of wheat seedlings to drought and UV-B radiation. Effect of exogenous sodium nitroprusside application. Russian Journal of Plant Physiology 54, 676–682. DOI: https://doi.org/10.1134/S1021443707050160
Tsuji, K., Ohnishi, O., 2001. Phylogenetic relationships among wild and cultivated Tartary buckwheat (Fagopyrum tataricum Gaertn.) populations revealed by AFLP analyses. Genes & Genetic Systems 76(1), 47-52. DOI: https://doi.org/10.1266/ggs.76.47
Valkama, E., Kivimaenpaa, M., Hartikainen, H., Wulff, A., 2003. The combined effects of enhanced UV-B radiation and selenium on growth, chlorophyll fluorescence and ultrastructure in strawberry (Fragaria x ananassa) and barley (Hordeum vulgare) treated in the field. Agricultural and Forest Meteorology 120, 267-278. DOI: https://doi.org/10.1016/j.agrformet.2003.08.021
Vanwindekens, F.M.,·Gobin, A., Curnel, Y., Planchon, V., 2018. New Approach for Mapping the Vulnerability of Agroecosystems Based on Expert Knowledge. Mathematical Geosciences 50, 679-696. DOI: https://doi.org/10.1007/s11004-018-9730-5
Wang, R., Hunt, H.V., Qiao, Z., Wang, L, Han, Y., 2016. Diversity and cultivation of broomcorn millet (Panicum miliaceum L.) in China: a review. Economic Botany 70, 332-342. DOI: https://doi.org/10.1007/s12231-016-9357-8
Zhang, Y., He, P., Zhang, C., 2011. Influences of enhanced UV-B radiation and drought stress on biomass accumulation and allocation of Fagopyrum dibotrys. China journal of Chinese materia medica 36(15), 2032-7.
Yao, Y., Xuan, Z., Li, Y., He, Y., Korpelainen, H., Li, C., 2006. Effects of ultraviolet-B radiation on crop growth, development, yield and leaf pigment concentration of tartary buckwheat (Fagopyrum tataricum) under field conditions. European Journal of Agronomy 25, 215–222. DOI: https://doi.org/10.1016/j.eja.2006.05.004
Yao, X., Jianzhou, C., Xueli, H., Binbin, L, Jingmin, L, Zhaowei, Y., 2013. Effects of selenium on agronomical characters of winter wheat exposed to enhanced ultraviolet-B. Ecotoxicology and Environmental Safety 92, 320-326. DOI: https://doi.org/10.1016/j.ecoenv.2013.03.024
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.