Effect of per oral administration of the ŽP strain, a new potential probiotic, on rats


  • Irina L. Maslennikova
  • Ekaterina G. Orlova
  • Julia S. Gizatullina
  • Marjanca Starčič Erjavec
  • Natalia P. Loginova
  • Yana N. Troinich
  • Marina V. Kuznetsova




probiotic, Nissle 1917 strain, host response, rat


Bacterial antimicrobial resistance is worldwide rising and is already reaching worrisome levels, hence WHO released the priority bacterial pathogen list for research and development of new antimicrobial agents. ŽP strain, a new Nissle 1917 based antimicrobial strain harbors a bacteriocin, colicin ColE7, bacterial conjugationbased “kill” – “anti-kill” antimicrobial system. In previous studies the efficiency of ColE7 bacterial conjugation-based antimicrobial system was shown against different Escherichia coli strains. In this study its effect after the per oral administration of the ŽP strain, on the host, namely on rats of both sexes was studied. The following parameters were analyzed weight, histology of intestine, spleen and Peyer’s patches, blood biochemistry, hematology and microbicide activity of leukocytes and peritoneal macrophages. Our results showed that when administered at a dose of 5 × 108 CFU in the drinking water the ŽP strain is safe and responsible for control and maintenance of an adequate local and non-specific immune response and can also improve the performance of animals in terms of weight gain. Hence our results indicate that it is a promising probiotic.


Aboderin, F.I., Oyetayo, V.O., 2006. Haematological studies of rats fed different doses of probiotic, Lactobacillus plantarum, isolated from fermenting corn slurry. Pak. J. Nutrition, 5 (2), 102–105. DOI: https://doi.org/10.3923/pjn.2006.102.105

Albiger, B., Glasner, C., Struelens, M., Grundmann, H., Monnet, D.L., 2015. European Survey of Carbapenemase–Producing Enterobacteriaceae (EuSCAPE) working group. Carbapenemaseproducing Enterobacteriaceae in Europe: assessment by national experts from 38 countries, May DOI: https://doi.org/10.2807/1560-7917.ES.2015.20.45.30062

Euro Surveill, 20 (45).

Allocati, N., Michele, M., Alexeyev, M.F., Ilio, D.C., 2013. Escherichia coli in Europe: An Overview. Int. J. Envir. Res. Pub. Health, 10, 6235–6254. DOI: https://doi.org/10.3390/ijerph10126235

Arribas, B., Rodríguez-Cabezas, M.E., Camuesco, D., Comalada, M., Bailón, E., Utrilla, P., Nieto, A., Concha, A., Zarzuelo, A., Gálvez, J., 2009. A probiotic strain of Escherichia coli, Nissle 1917, given orally exerts local and systemic anti-inflammatory effects in lipopolysaccharide-induced sepsis in mice. Br. J. Pharmacol., 157 (6), 1024–1033. DOI: https://doi.org/10.1111/j.1476-5381.2009.00270.x

Ben Lagha, A., Haas, B., Gottschalk, M., Grenier, D., 2017. Antimicrobial potential of bacteriocins in poultry and swine production. Vet. Res., 48, 22. DOI: https://doi.org/10.1186/s13567-017-0425-6

Boulianne, M., Arsenault, J., Daignault, D., Archambault, M., Letellier, A., Dutil, L., 2016. Drug use and antimicrobial resistance among Escherichia coli and Enterococcus spp. isolates from chicken and turkey flocks slaughtered in Quebec, Canada. Can. J. Vet. Res., 80 (1), 49–59.

Davis, G.S., Waits, K., Nordstrom, L., Grande, H., Weaver, B., Papp, K., Horwinski, J., Koch, B., Hungate, B.A., Liu, C.M., Price, L.B., 2018. Antibiotic-resistant Escherichia coli from retail poultry meat with different antibiotic use claims. BMC Microbiol., 18 (1), 174. DOI: https://doi.org/10.1186/s12866-018-1322-5

Ewers, C., Bethe, A., Semmler, T., Guenther, S., Wieler, L.H., 2012. Extended-spectrum beta-lactamaseproducing and AmpC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: A global perspective. Clin. Microbiol. Infect., 18, 646–655. DOI: https://doi.org/10.1111/j.1469-0691.2012.03850.x

GOST 34088-2017. Rukovodstvo po soderzhaniyu i uhodu za laboratornymi zhivotnymi. Pravila soderzhaniya i uhoda za sel’skohozyajstvennymi zhivotnymi/GOST 34088-2017. Guide for the maintenance and care of laboratory animals. Rules for the maintenance and care of farm animals. Karlowsky, J.A., Lob, S.H., Kazmierczak, K.M., Bada, R.E., Young, K., Motyl, M.R., Sahm, D.F., 2017.

In vitro activity of imipenem against carbapenemasepositive Enterobacteriaceae isolates collected by the SMART Global Surveillance Program from 2008 to 2014. J. Clin. Microbiol., 55, 1638–1649. DOI: https://doi.org/10.1128/JCM.02316-16

Koga, V.L., Rodrigues, G.R., Scandorieiro, S., 2015. Evaluation of the antibiotic resistance and virulence of Escherichia coli strains isolated from chicken carcasses in 2007 and 2013 from Parana, Brazil. Foodborne Pathog. Dis., 12 (6), 479–485. DOI: https://doi.org/10.1089/fpd.2014.1888

Maldonado, G.C., Cazorla, S.I., Lemme Dumit, J.M., Vélez, E., Perdigón, G., 2019. Beneficial effects of probiotic consumption on the immune system. Ann. Nutr. Metab., 74 (2), 115–124. DOI: https://doi.org/10.1159/000496426

Maslennikova, I.L., Kuznetsova, M.V., Nekrasova, I.V., Shirshev, S.V., 2017. Effect of bacterial components of mixed culture supernatants of planktonic and biofilm Pseudomonas aeruginosa with commensal Escherichia coli on the neutrophil response in vitro. Pathog. Dis., 75 (8), 1-12. DOI: https://doi.org/10.1093/femspd/ftx105

Maslennikova, I.L., Kuznetsova, M.V., Toplak, N., Nekrasova, I.V., Zgur Bertok, D., Starcic Erjavec, M., 2018. Estimation of the bacteriocin ColE7 conjugation-based “kill”-“anti-kill” antimicrobial system by real-time PCR, fluorescence staining and bioluminescence assays. Lett. Appl. Microbiol., 67 (1), 47–53. DOI: https://doi.org/10.1111/lam.12884

Mountzouris, K.C., Tsirtsikos, P., Kalamara, E., Nitsch, S., Schatzmayr, G., Fegeros K., 2007. Evaluation of the efficacy of a probiotic containing Lactobacillus, Bifidobacterium, Enterococcus, and Pediococcus strains in promoting broiler performance and modulating fecal microflora composition and metabolic activities. Poultry Sci., 86 (2), 309–317. DOI: https://doi.org/10.1093/ps/86.2.309

Mountzouris, K.C., Tsitrsikos, P., Palamidi, I., Arvaniti, A., Mohnl, M., Schatzmayr, G., Fegeros, K., 2010. Effects of probiotic inclusion levels in broiler nutrition on growth performance, nutrient digestibility, plasma immunoglobulins, and fecal microflora composition. Poultry Sci., 89, 58–67. DOI: https://doi.org/10.3382/ps.2009-00308

O’Neill, J., 2014. Review on Antimicrobial Resistance Antimicrobial Resistance: Tackling a crisis for the health and wealth of nations. London: Review on Antimicrobial Resistance. Available from: https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf

Pivkin, I.V., Peng, Z., Karniadakis, G.E., Buffet, P.A., Dao, M., Suresh S., 2016. Biomechanics of red blood cells in human spleen and consequences for physiology and disease. Proc. Natl. Acad. Sci. USA, 113 (28), 7804–7809. DOI: https://doi.org/10.1073/pnas.1606751113

Salahuddin, M., Akhter, H., Akte,r S., Miah, M.A., Ahmad, N., 2013. Effects of probiotics on haematology and biochemical parameters in mice. Bangladesh Vet., 30, 20–24. DOI: https://doi.org/10.3329/bvet.v30i1.16281

Silva, V.O., Foureaux, R.C., Araujo, T.S., Peconick, A.P., Zangeronimo, M.G., Pereira, L.J., 2012. Effect of probiotic administration on the immune response: a systematic review of experimental models in rats. Braz. Arch. Biol. Technol., 55, 685–694. DOI: https://doi.org/10.1590/S1516-89132012000500007

Sonnenborn, U., 2009. The non-pathogenic Escherichia coli strain Nissle 1917-features of a versatile probiotic. Microb. Ecol. Health Disease, 21 (3), 122–158. DOI: https://doi.org/10.3109/08910600903444267

Starčič Erjavec, M., Petkovšek, Ž., Kuznetsova, M.V., Maslennikova, I.L., Žgur-Bertok, D., 2015.

Strain ŽP - the first bacterial conjugation-based “kill”-“anti-kill” antimicrobial system. Plasmid, 3 (82), 28–34. DOI: https://doi.org/10.1016/j.plasmid.2015.10.001

Timmerman, H.M., Veldman, A., Van den Elsen, E., Rombouts, F.M. and Beynen, A.C., 2006. Mortality and growth performance of broilers given drinking water supplemented with chickenspecific probiotics. Poultry Sci., 85, 1383–1388. DOI: https://doi.org/10.1093/ps/85.8.1383

Van Duin, D., Doi, Y., 2017. The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence, 8, 460–469. DOI: https://doi.org/10.1080/21505594.2016.1222343

Wehkamp, J., Harder, J., Wehkamp, K., Wehkamp-von Meissner, B., Schlee, M., Enders, C., Sonnenborn, U., Nuding, S., Bengmark, S., Fellermann, K., Schröder, J.M., Stange E.F., 2004. NF-kappaB- and AP-1-mediated induction of human beta defensin-2 in intestinal epithelial cells by Escherichia coli Nissle 1917: a novel effect of a probiotic bacterium. Infect. Immun., 72 (10), 5750–5758. DOI: https://doi.org/10.1128/IAI.72.10.5750-5758.2004

WHO, 2017. World Health Organization. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. Geneva: WHO Press, pp. 1–7.

Zaets, S.B., Berezina, T.L., Xu, D.Z., Lu, Q., Ricci, J., Cohen, D., Ananthakrishnan, P., Deitch, E.A., Machiedo, G.W., 2003. Burn-induced red blood cell deformability and shape changes are modulated by sex hormones. Am. J. Surg., 186 (5), 540–546. DOI: https://doi.org/10.1016/j.amjsurg.2003.07.022






Original Research Paper

How to Cite

L. Maslennikova, I., G. Orlova, E., S. Gizatullina, J., Starčič Erjavec, M., P. Loginova, N., N. Troinich, Y., & V. Kuznetsova, M. (2019). Effect of per oral administration of the ŽP strain, a new potential probiotic, on rats. Acta Biologica Slovenica, 62(2), 15-25. https://doi.org/10.14720/abs.62.2.15750

Similar Articles

1-10 of 65

You may also start an advanced similarity search for this article.