Investigation of the toxicity, antioxidant and antimicrobial activities of some cyanobacterial strains isolated from different habitats

Authors

  • Nooshin Rajabpour
  • Bahareh Nowruzi
  • Maryam Ghobeh

DOI:

https://doi.org/10.14720/abs.62.2.15753

Keywords:

antioxidant, antimicrobial, toxicity, cyanobacteria

Abstract

Cyanobacteria are known as a source of fine chemicals, renewable fuels, and toxic compounds. The present study aimed at evaluating the toxicity and antioxidant and antimicrobial activities of four cyanobacterial strains isolated from different habitats. Due to the lack of information regarding the relationship between toxicity and biological activity of the cyanobacteria in terrestrial and aquatic ecosystems of Iran, we decided to conduct a preliminary study on the cyanobacterial strains in order to identify the potentially toxic cyanobacteria strains. In this respect, biosynthesis genes related to cyanobacterial toxins, anatoxins (anaC gene), nodularins (ndaF gene) and microcystins (mcyG gene) were amplified. In addition, antioxidant, antimicrobial and biochemical properties of cyanobacterial strains have also been evaluated. The results of the molecular analysis demonstrated that only Fischerella sp. contained the microcystins (mcyG) gene. In fact, this strain encounters numerous predators in its habitat, therefore antibacterial and antioxidant metabolites found in this strain have thought to play an important role in defense mechanisms. This case is the documentation of toxicity and promotion of biological activities of a soil cyanobacterium regarding survival in competitive ecological niches.

References

Arun, N., Gupta, S. Singh, D.P., 2012. Antimicrobial and antioxidant property of commonly found microalgae Spirulina platensis, Nostoc muscorum and Chlorella pyrenoidosa against some pathogenic bacteria and fungi.International Journal of Pharmaceutical Sciences and Research, 3(12), 4866-4875.

Bouaïcha, N., Corbel, S., 2016. Cyanobacterial toxins emerging contaminants in soils: a review of sources, fate and impacts on ecosystems, plants and animal and human health. Soil ContaminationCurrent Consequences and Further Solutions. IntechOpen. DOI: 10.5772/64940 DOI: https://doi.org/10.5772/64940

Corbel, S., Mougin, C., Bouaïcha, N., 2014. Cyanobacterial toxins: modes of actions, fate in aquatic and soil ecosystems, phytotoxicity and bioaccumulation in agricultural crops. Chemosphere, 96, 1-15. DOI: https://doi.org/10.1016/j.chemosphere.2013.07.056

Cragg, G.M., Newman, D.J., 2013. Natural products: A continuing source of novel drug leads. Biochimica et Biophysica Acta, 1830, 3670-3695. DOI: https://doi.org/10.1016/j.bbagen.2013.02.008

El-Karim, M.S.A., 2016. Chemical composition and antimicrobial activities of cyanobacterial mats from hyper saline lakes, Northern Western desert, Egypt. Journal of Applied Sciences, 16(1), 1-10. DOI: https://doi.org/10.3923/jas.2016.1.10

Falaise, C., François, C., Travers, M.A., Morga, B., Haure, J., Tremblay, R., Turcotte, F., Pasetto, P., Gastineau, R., Hardivillier, Y., Leignel, V., 2016. Antimicrobial compounds from eukaryotic microalgae against human pathogens and diseases in aquaculture. Marine drugs, 14(9), 1-27. DOI: https://doi.org/10.3390/md14090159

Holland, A., Kinnear, S., 2013. Interpreting the possible ecological role(s) of cyanotoxins: compounds for competitive advantage and/or physiological aide? Marine Drugs, 11(7), 2239-2258. DOI: https://doi.org/10.3390/md11072239

Jones, G.J., Falconer, I.R., Wilkins, R.M., 1995. Persistence of cyclic peptide toxins in dried Microcystis aeruginosa crusts from Lake Mokoan, Australia. Environmental toxicology and water quality, 10(1), 19-24. DOI: https://doi.org/10.1002/tox.2530100104

Kalaitzis, J.A., Lauro, F.M., Neilan, B.A., 2009. Mining cyanobacterial genomes for genes encoding complex biosynthetic pathways. Natural product reports, 26(11), 1447-1465. DOI: https://doi.org/10.1039/b817074f

Kamble, S.P., Gaikar, R.B., Padalia, R.B., Shinde, K.D., 2013. Extraction and purification of C-phycocyanin from dry Spirulina powder and evaluating its antioxidant, anticoagulation and prevention of DNA damage activity. Journal of Applied Pharmaceutical Science, 3(8), 149-153.

Komárek J., Sant´Anna C.L., Bohunická M., Mareš J., Hentschke G.S., Rigonato J., Fioreet M.F., 2013. Phenotype diversity and phylogeny of selected Scytonema-species (Cyanoprokaryota) from SE Brazil. Fottea, 13(2): 173–200. DOI: https://doi.org/10.5507/fot.2013.015

Koskenniemi, K., Lyra, C., Rajaniemi-Wacklin, P., Jokela, J., Sivonen, K., 2007. Quantitative realtime PCR detection of toxic Nodularia cyanobacteria in the Baltic Sea. Applied Environmental Microbiology, 73(7), 2173-2179. DOI: https://doi.org/10.1128/AEM.02746-06

Kultschar, B., Llewellyn, C., 2018. Secondary metabolites in Cyanobacteria. Secondary MetabolitesSources and Applications. IntechOpen. DOI: 10.5772/intechopen.75648 DOI: https://doi.org/10.5772/intechopen.75648

Liu, L., Jokela, J., Wahlsten, M., Nowruzi, B., Permi, P., Zhang, Y.Z., Xhaard, H., Fewer, D.P., Sivonen, K., 2014. Nostosins, trypsin inhibitors isolated from the terrestrial cyanobacterium Nostoc sp. strain FSN. Journal of Natural Products, 77(8), 1784-1790. DOI: https://doi.org/10.1021/np500106w

Mazard, S., Penesyan, A., Ostrowski, M., Paulsen, I., Egan, S., 2016. Tiny microbes with a big impact: the role of cyanobacteria and their metabolites in shaping our future. Marine drugs, 14(5), 1-19. DOI: https://doi.org/10.3390/md14050097

Miranda, M.S., Cintra, R.G., Barros, S.B.D.M., Mancini-Filho, J., 1998. Antioxidant activity of the microalga Spirulina maxima.Brazilian Journal of Medical and biological research, 31(8), 1075-1079. DOI: https://doi.org/10.1590/S0100-879X1998000800007

Nowruzi, B., Ahmadimoghadam, A., 2006. Two new records of heterocystus cyanobacteria (Nostocaceae) from paddy fields of Golestan Province. Iranian Journal of Botany, 11(2), 170-173.

Nowruzi, B., Khavari-Nejad, R.A., Sivonen, K., Kazemi, B., Najafi, F., Nejadsattari, T., 2012a. Phylogenetic and morphological evaluation of two species of Nostoc (Nostocales, Cyanobacteria) in certain physiological conditions. African Journal of Agricultural Research, 7(27), 3887-3897. DOI: https://doi.org/10.5897/AJAR11.837

Nowruzi, B., Khavari-Nejad, R.A., Sivonen, K., Kazemi, B., Najafi, F., Nejadsattari, T., 2012b. A gene expression study on strains of Nostoc (Cyanobacteria) revealing antimicrobial activity under mixotrophic conditions. African Journal of Biotechnology, 11(51), 11296-11308. DOI: https://doi.org/10.5897/AJB11.4129

Nowruzi, B., Khavari-Nejad, R.A., Sivonen, K., Kazemi, B., Najafi, F., Nejadsattari, T., 2012c. Identification and toxigenic potential of a Nostoc sp. Algae, 27(4), 303-313. DOI: https://doi.org/10.4490/algae.2012.27.4.303

Nowruzi, B., Khavari-Nejad, R.A., Sivonen, K., Kazemi, B., Najafi, F. and Nejadsattari, T., 2013a. Optimization of cultivation conditions to maximize extracellular investments of two Nostoc strains. Archiv fur Hydrobiologie. Supplementband: Algological Studies. 142(1), 63-76. DOI: https://doi.org/10.1127/1864-1318/2013/0066

Nowruzi, B., Khavari-Nejad, R.A., Sivonen, K., Kazemi, B., Najafi, F., Nejadsattari, T., 2013b. Identification and toxigenic potential of a cyanobacterial strain (Stigomena sp.). Progress in Biological Sciences, 3(1), 79-85.

Nowruzi, B., Khavari-Nejad, R.A., Nejadsattari, T., Sivonen, K., Fewer, D., 2017a. A proposal for the unification of two cyanobacterial strains of Nostoc as the same species. Rostaniha, 17(2), 161-172.

Nowruzi, B., Fahimi, H., Ordodari, N., Assareh, R., 2017b. Genetic analysis of polyketide synthase and peptide synthase genes of‎ cyanobacteria as a mining tool for new pharmaceutical compounds. Journal of Pharmaceutical & Health Sciences, 5(2), 139-150.

Nowruzi, B., Fahimi, H., Ordodari, N. 2017c. Molecular phylogenetic and morphometric evaluation of Calothrix sp. N42 and Scytonema sp. N11. Rostaniha, 18(2), 210–221.

Nowruzi, B., Haghighat, S., Fahimi, H., Mohammadi, E., 2018a. Nostoc cyanobacteria species: a new and rich source of novel bioactive compounds with pharmaceutical potential. Journal of Pharmaceutical Health Services Research. 9(1), 5-12. DOI: https://doi.org/10.1111/jphs.12202

Nowruzi, B., Blanco, S., Nejadsattari, T., 2018b. Chemical and molecular evidences for the poisoning of a duck by anatoxin-a, nodularin and cryptophycin at the coast of the ShoorMast Lake (Mazandaran province, Iran). International Journal of Algae, 20(4), 359-376. DOI: https://doi.org/10.1615/InterJAlgae.v20.i4.30

Nowruzi, B., Blanco, S., 2019. In silico identification and evolutionary analysis of candidate genes involved in the biosynthesis methylproline genes in cyanobacteria strains of Iran. Phytochemistry Letters. 29, 199-211. DOI: https://doi.org/10.1016/j.phytol.2018.12.011

Nowruzi, B., Sarvari, G., Blanco, S., 2020. Applications of cyanobacteria in biomedicine. In: Konur, O. (Ed.) The Handbook of Algal Science, Microbiology, Technology and Medicine. Elsevier, Amsterdam, Paperback ISBN: 9780128183052. DOI: https://doi.org/10.1016/B978-0-12-818305-2.00028-0

Raaman, N., 2006. Phytochemical Techniques. New India Publishing Agency, New Delhi, India, Pages: 318. DOI: https://doi.org/10.59317/9789390083404

Rajeshwari, K.R., Rajashekhar, M., 2011. Biochemical composition of seven species of cyanobacteria isolated from different aquatic habitats of Western Ghats, Southern India. Brazilian archives of biology and technology, 54(5), 849-857. DOI: https://doi.org/10.1590/S1516-89132011000500001

Rantala, A., Rajaniemi-Wacklin, P., Lyra, C., Lepistö, L., Rintala, J., Mankiewicz-Boczek, J., Sivonen, K., 2006. Detection of microcystin-producing cyanobacteria in Finnish lakes with genus-specific microcystin synthetase gene E (mcyE) PCR and associations with environmental factors. Applied and Environmental Microbiology, 72(9), 6101-6110. DOI: https://doi.org/10.1128/AEM.01058-06

Shokraei, R., Fahimi, H., Blancom S., Nowruzi, B, 2019. Genomic fingerprinting using highly repetitive sequences to differentiate close cyanobacterial strains. Microbial bioactives, 2(1), 68-75. DOI: https://doi.org/10.25163/microbbioacts.21015A2624310119

Sivonen, K., Börner, T., 2008. Bioactive compounds produced by cyanobacteria. The cyanobacteria: molecular biology, genomics and evolution, 159-197.

Downloads

Published

01.12.2019

Issue

Section

Original Research Paper

How to Cite

Rajabpour, N., Nowruzi, B., & Ghobeh, M. (2019). Investigation of the toxicity, antioxidant and antimicrobial activities of some cyanobacterial strains isolated from different habitats. Acta Biologica Slovenica, 62(2), 4-12. https://doi.org/10.14720/abs.62.2.15753