Effect of ultrasonic algae control devices on non-target organisms: a review


  • Pija Klemenčič
  • Aleksandra Krivograd Klemenčič




algal blooms, algal control, fish, ultrasound, zooplankton


There is an increasing interest in using ultrasonication in controlling algal (cyanobacterial) blooms and biofouling, a physical method with presumably no adverse effects on non-target organisms, such as fish and zooplankton. At the beginning the use of ultrasound (US) to control algae and biofouling has focused on high-power US causing cavitation; however, due to the potential damage to non-target organisms including marine mammals and human divers, high-power US causing cavitation are not used anymore for algae control in natural environment. Current ultrasonic algae control devices use low-power and thus control algae and biofouling by utilising resonance frequencies and the sound pressure caused by a sound wave propagating through a water column. There are only few studies existing on the effect of US on non-target organisms with incomplete information on wavelengths and intensities of US devices. However, we can conclude that non-cavitation US devices used to control algae and reduce biofouling had no adverse health effects on studied fish species with no feeding and behaviour changes noticed. Caution should be taken when installing
US devices in marine locations since they may interfere with communication between sea mammals or may cause adverse effects on fish from subfamily Alosinae, the only known fish able to detect US. The studies dealing with non-cavitation US used to control algae and biofouling on non-target zooplankton have conflicting results from high mortality to no evident effects. Therefore, caution should be taken when using US for counteract algal growth in ponds or lakes, especially in terms of zooplankton and natural balance maintenance.


Askokkumar, M., Lee, J., Kentish, S., Grieser, F., 2007. Bubbles in an acoustic field: An overview. Ultrasonics Sonochemistry, 14, 470–475. DOI: https://doi.org/10.1016/j.ultsonch.2006.09.016

Astrup, J., Møhl, B., 1993. Detection of intense ultrasound by the cod, Gadus morhua. Journal of Experimental Biology, 182, 71–80. DOI: https://doi.org/10.1242/jeb.182.1.71

Bass, A.H., Ladich, F., 2008. Vocal – acoustic communication: From neurons to behavior. In: Webb, J.F., Popper, A.N., Fay, R.R. (eds.): Fish bioacoustics. Springer, New York, pp 253–278. DOI: https://doi.org/10.1007/978-0-387-73029-5_8

De Lange, M.C., 2007. Control of blue algae with ultrasound – the effects on fish. Report: VA2007_28. VisAdvies BV, Utrecht, 10 pp.

Duchene, L., 2016. Chem-free fixes emerging in sea lice saga. Global aquaculture advocate, March

https://www.aquaculturealliance.org/advocate/chem-free-fixes-emerging-in-sea-lice-saga (19.11.2020).

Dular, M., Griessler Bulc, T., Gutierrez-Aguirre, I., Heath, E., Kosjek, T., Krivograd Klemenčič, A., Oder, M., Petkovšek, M., Rački, N., ravnikar, M., Šarc, A., Širok, B. Zupanc, M., Žitnik, M., Komapre, B., 2016. Use of hydrodynamic cavitation in (waste)water treatment. Ultrasonics Sonochemistry, 29, 577–588. DOI: https://doi.org/10.1016/j.ultsonch.2015.10.010

Dunning, D.J., Ross, Q.E., Geoghegan, P., Reichle, J.J., Menezes, J.K., Watson, J.K., 1992. Alewives avoid high-frequency sound. North American Journal of Fisheries Management, 12, 407–416. DOI: https://doi.org/10.1577/1548-8675(1992)012<0407:AAHFS>2.3.CO;2

Fay, R.R., 1988. Hearing in vertebrates: A psychophysics databook. Winnetka, IL: Hill-Fay Associates, 621 pp.

Fay, R.R., Megela-Simmons, A., 1999. The sense of hearing in fishes and amphibians. In: Fay, R.R., Popper, A.N. (eds.): Comparative Hearing: Fish and Amphibians. Springer-Verlag, New York, 269–318. DOI: https://doi.org/10.1007/978-1-4612-0533-3_7

Fernandez-Alonso, M., Rocha, A., Coll, J.M., 2001. DNA vaccination by immersion and ultrasound to trout viral haemorrhagic septicemia virus. Vaccine, 19, 3067–3075. DOI: https://doi.org/10.1016/S0264-410X(01)00046-9

Frenkel, V., Kimmel, E., Iger, Y., 2000a. Ultrasound-induced intercellular space widening in fish epidermis. Ultrasound in Medicine and Biology, 26, 473–480. DOI: https://doi.org/10.1016/S0301-5629(99)00164-7

Frenkel, V., Kimmel, E., Iger, Y., 2000b. Ultrasound-facilitated transport of silver chloride (AgCl) particles in fish skin. Journal of Controlled Release, 68, 251–261. DOI: https://doi.org/10.1016/S0168-3659(00)00264-9

Govaert, E., Vanderstukken, M., Muylaert, K., 2007. Evaluatie van Effecten van Ultrasone Straling op Het Ecosysteem. KU Leuven Kortrijk: Kortrijk, Belgium, 20 pp. (In Dutch)

Gregg, M., Rigby, G., Hallegraeff, G.M., 2009. Review of two decades of progress in the development of management options for reducing or eradicating phytoplankton, zooplankton and bacteria in ship’s ballast water. Aquatic Invasions, 4, 521–565. DOI: https://doi.org/10.3391/ai.2009.4.3.14

Gregory, J., Lewis, M., Hateley, J., 2007. Are twaite shad able to detect sound at a higher than any other fish? Results from a high resolution imaging sonar. Proceedings of the Institute of Acoustics, Loughborough University, UK, Part 3, 29 pp.

Griessler Bulc, T., Istenič, D., Krivograd Klemenčič, A., 2011. The efficiency of a closed-loop chemicalfree water treatment system for cyprinid fish farms. Ecological Engineering, 37, 873–882. DOI: https://doi.org/10.1016/j.ecoleng.2011.01.004

Hawkins, A.D., 1981. The hearing abilities of Fish. In: Tavolga, W.N., Popper, A.N., Fay, R.R. (eds.): Hearing and sound communication in fishes. Springer-Verlag, New York, 109–133. DOI: https://doi.org/10.1007/978-1-4615-7186-5_6

Hedge, E., 2013. Investigating the impact of ultrasonic algal control on Daphnia in a freshwater ecosystem. BSc, Lancaster University. Holm, E.R., Stamper, D.M., Brizzolara, R.A., Barnes, L., Deamer, N., Burkholder, J.M., 2008. Sonication of bacteria, phytoplankton, and zooplankton: application to treatment of ballast water. Marine Pollution Bulletin, 56, 1201–1208. DOI: https://doi.org/10.1016/j.marpolbul.2008.02.007

Jarni, K., Griessler Bulc, T., Krivograd Klemenčič, A., 2017. Occurrence, toxins and possibilities of control of bloom-forming cyanobacteria of European freshwaters: a review. Acta Biologica Slovenica, 60, 3–28.

Joyce, E.M., Wu, X., Mason, T.J., 2010. Effects of ultrasonic frequency and power on algae suspensions. Journal of Environmental Science and Health, Part A, 45, 863–866. DOI: https://doi.org/10.1080/10934521003709065

Kamenskii, I.V., 1970. Influence of ultrasound on eggs and larvae of some fish trematodes. Byulleten Vsesoyuznogo Instituta Gelmintologii im 4, 47–50.

Krivograd Klemenčič, A., Griessler Bulc, T., 2010. The efficiency of ultrasound on algal control in a closed loop water treatment for cyprinid fish farms. Fresenius Environmental Bulletin, 19, 919–931.

Krivograd Klemenčič, A., Griessler Bulc, T., 2013. The efficiency of constructed wetland and ultrasound for water reuse in a closed-loop small-scale cyprinid fish farm. Fresenius Environmental Bulletin, 22, 2828–2835.

Krivograd Klemenčič, A., Griessler Bulc, T., 2015. The use of vertical constructed wetland and ultrasound in aquaponic systems. Environmental Science and Pollution Research International, 22, 1420–1430. DOI: https://doi.org/10.1007/s11356-014-3463-x

Klemenčič, P., Krivograd Klemenčič, A., 2021. The effect of ultrasound for algae growth control on zooplankton. Acta Hydrotechnica, in press Kynard, B., O’Leary, J., 1990. Behavioral guidance of adult American shad using underwater AC electrical and acoustic fields. In: Proceedings of the International Symposium on Fishways ’90. Gifu, Japan, October 8–10, 131–135.

LaLiberte, G., Haber, E., 2014. Literature review of the effects of ultrasonic waves on cyanobacteria, other aquatic organisms, and water quality. Research Report 195. Wisconsin department of natural resources, Madison, 14 pp.

Lee, T.J., Nakano, K., Matsumura, M., 2001. Ultrasonic irradiation for blue-green algae bloom control. Environmental Technology, 22, 383–390. DOI: https://doi.org/10.1080/09593332208618270

Lloyd’s Register Group Limited 2014. Understanding ballast water management. Guidance for ship owners and operators. Lowe, M., 2011. Ultrasonic control of algae in stormwater systems. Water New Zealand, 7th South Pacific Stormwater Conference.

Lürling, M., Tolman, Y., 2014a. Beating the blues: Is there any music in fighting cyanobacteria with ultrasound? Water Research, 66, 361–373. DOI: https://doi.org/10.1016/j.watres.2014.08.043

Lürling, M., Tolman, Y., 2014b. Effects of commercially available ultrasound on the zooplankton grazer Daphnia and consequent water greening in laboratory experiments. Water, 6, 3247–3263. DOI: https://doi.org/10.3390/w6113247

Mann, D.A., Higgs, D.M., Tavolga, W.N., Souza, M.J., Popper, A.N., 2001. Ultrasound detection by clupeiform fishes. Journal of Acoustical Society of America, 109, 3048–3054. DOI: https://doi.org/10.1121/1.1368406

Mann, D.A., Lu, Z., Popper, A.N., 1997. A clupeid fish can detect ultrasound. Nature, 389, 341. DOI: https://doi.org/10.1038/38636

Mann, D.A., Popper, A.N., Wilson, B., 2005. Pacific herring hearing does not include ultrasound. Biology Letters, 1, 158–161. DOI: https://doi.org/10.1098/rsbl.2004.0241

Margulis, M.A., 1995. Sonochemistry and cavitation. Gordon and Breach Science Publishers, Amsterdam. Narins, P.M., Wilson, M., Mann, D.A., 2013. Ultrasound detection in fishes and frogs: Discovery and mechanisms. In: Köppl, C., Manley, G.A., Popper, A.N., Fay, R.R. (eds.): Insights from Comparative Hearing Research, Vol. 49. Springer Handbook of Auditory Research, pp. 133–156. DOI: https://doi.org/10.1007/2506_2013_29

Neppiras, E.A., 1984. Acoustic cavitation series: part one: Acoustic cavitation: an introduction. Ultrasonics, 22, 25–28. DOI: https://doi.org/10.1016/0041-624X(84)90057-X

Nestler, J.M., Ploskey, G.R., Pickens, J., 1992. Responses of blueback herring to high frequency sound and implications for reducing entrainment at hydropower dams. North American Journal of Fisheries Management, 12, 667–683. DOI: https://doi.org/10.1577/1548-8675(1992)012<0667:ROBHTH>2.3.CO;2

Oyib, D.H., 2009. Ultrasound technology controls algae, biofilm growth. Aquaculture Engineering. Global aquaculture advocate, July/August 2009, 32–34.

Paterson, M.J., 2001. Ecological monitoring and assessment network (EMAN) protocols for measuring biodiversity: zooplankton in fresh waters. EMAN protocols.

Plachta, D.T.T., Song, J., Halvorsen, M.B., Popper, A.N., 2004. Neuronal encoding of ultrasonic sound by a fish. Journal of Neurophysiology, 91, 2590–2597. DOI: https://doi.org/10.1152/jn.01200.2003

Popper, A.N., Fay, R.R., Platt, C., Sand, O. 2003. Sound detection mechanisms and capabilities of teleost fishes. In: Collin, S.P., Marshall, N.J. (eds): Sensory Processing in Aquatic Environments. Springer-Verlag, New York, pp. 3–38. DOI: https://doi.org/10.1007/978-0-387-22628-6_1

Popper, N., 2008. Effects of mid- and high-frequency sonars on fish. Naval Undersea Warfare Center Division, Newport, Rhode Island, 52 pp. Rajasekhar, P., Fan, L., Nguyen, T., Roddick, F.A., 2012. A review of the use of sonication to control cyanobacterial blooms. Water Research, 46, 4319–4329. DOI: https://doi.org/10.1016/j.watres.2012.05.054

Sassi, J., Viitasalo, S., Rytkönen, J., Leppäkoski, E., 2005. Experiments with ultraviolet light, ultrasound and ozone technologies for onboard ballast water treatment. Espoo, VTT Tiedotteita, Research Notes 2313, 80 pp.

Schack, H.B., Malte, H., Madsen, P.T., 2008. The response of Atlantic cod (Gadus morhua) to ultrasound-emitting predators: Stress, behavioural changes or debilitation? The Journal of Experimental Biology, 211, 2079–2086. DOI: https://doi.org/10.1242/jeb.015081

Song, W., Teshiba, T., Rein, K., O’Shea, K.E., 2005. Ultrasonically induced degradation and detoxification of microcystin-LR (cyanobacterial toxin). Environmental Science and Technology, 39, 6300–6305. DOI: https://doi.org/10.1021/es048350z

Techer, D., Milla, S., Banas, D., 2017. Sublethal effect assessment of a low-power and dual-frequency anti-cyanobacterial ultrasound device on the common carp (Cyprinus carpio): a field study. Environmental Science and Pollution Research, 24, 5669–5678. DOI: https://doi.org/10.1007/s11356-016-8305-6

Wells, P.N.T., 1968. The effect of ultrasonic irradiation on the survival of Daphnia magna. Experimental Biology, 49, 61–70. DOI: https://doi.org/10.1242/jeb.49.1.61

Wilson, M., Acolas, M.L., Begout, M.L., Madsen, P.T., Wahlberg, M., 2008. Allis shad (Alosa alosa) exhibit an intensity-graded behavioural response when exposed to ultrasound. JASA Express Letters, 124, EL243–EL247. DOI: https://doi.org/10.1121/1.2960899

Wilson, M., Schack, H.B., Madsen, P.T., Surlykke, A., Wahlberg, M., 2011. Directional escape behavior in allis shad (Alosa alosa) exposed to ultrasonic clicks mimicking an approaching toothed whale. Journal of Experimental Biology, 214, 22–29. DOI: https://doi.org/10.1242/jeb.043323

Zelick, R., Mann, D., Popper, A.N., 1999. Acoustic communication in fishes and frogs. In: Fay, R.R., Popper, A.N. (eds.): Comparative Hearing: Fish and Amphibians. Springer-Verlag, New York, pp. 363–411. DOI: https://doi.org/10.1007/978-1-4612-0533-3_9

Zhang, G., Zhang, P., Wang, B., Liu, H., 2006. Ultrasonic frequency effects on the removal of Microcystis aeruginosa. Ultrasonics Sonochemistry, 13, 446–450. DOI: https://doi.org/10.1016/j.ultsonch.2005.09.012

Zimba, P.V., Grimm, C.G., 2008. Ultrasound tested in channel catfish production systems. Global Aquaculture Advocate, July/August 2008, 58–59.

Zohar, Y., D’Emanuele, A., Kost, J., Langer, R.S., 1991. United States Patent 5,076,208: Ultrasoundmediated administration of compounds into aquatic animals – filed 14 September 1990, issued 31 December 1991.






Original Research Paper

How to Cite

Klemenčič, P., & Krivograd Klemenčič, A. (2021). Effect of ultrasonic algae control devices on non-target organisms: a review. Acta Biologica Slovenica, 64(1), 5-17. https://doi.org/10.14720/abs.64.1.15758

Similar Articles

1-10 of 49

You may also start an advanced similarity search for this article.