Immune system in crustaceans: a presentation of research with terrestrial crustacean Porcellio scaber


  • Andraž Dolar
  • Damjana Drobne
  • Rok Kostanjšek
  • Anita Jemec Kokalj



encapsulation, haemocyte, melanization, nodulation, phagocytosis, signal pathway


The immune system is crucial to recognise and distinguish between self and nonself, and react to challenges posed by the environment. We present a review on the innate immunity of crustaceans, in particular terrestrial crustacean woodlice Porcellio scaber. The main effectors of immunity in crustaceans are haemocytes which carry out the cellular immune processes and synthesise humoral defence components. We described three types of haemocytes in P. scaber: semigranulocytes (65% of freely
circulating haemocytes), granulocytes (17%) and hyalinocytes (18%). The average density of free circulating haemocytes is 3.50 ± 0.19 x 106 cells/mL. Semigranulocytes and granulocytes are both oval shaped with a similar diameter (11.2 ± 0.4 µm and 12.0 ± 0.3 µm, respectively), but granulocytes have a higher density of granules which are also larger than in the case of semigranulocytes. Hyalinocytes are round, agranular and smaller (8.1 ± 0.3 µm). Two types of hyalinocytes were discovered. One subtype is of particular interest, as it has a very large nucleus with dominating euchromatine resembling properties of the stem progenitor cells. We have implemented new methods to measure humoral components in the haemolymph of P. scaber. These are: phenoloxidase like activity, nitric oxide levels, antioxidant enzyme activity and alpha2-macroglobulin. The formation of nodules was noted in the case of P. scaber infection with bacteria Rhabdochlamydia porcellionis. Our future research will be focused to investigate the immune response of P. scaber at the proteome and transcriptome level.


Ageitos, J.M., Sánchez-Pérez, A., Calo-Mata, P., Villa, T.G., 2017. Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochemical Pharmacology, 133, 117-138. DOI:

Alikhan, M.A., Naich, M., 1987. Changes in counts of haemocytes and in their physicochemical properties during the moult cycle in Porcellio spinicornis Say (Porcellionidae, Isopoda). Canadian Journal of Zoology, 65 (7), 1685-1688. DOI:

Amparyup, P., Charoensapsri, W., Tassanakajon, A., 2013. Prophenoloxidase system and its role in shrimp immune responses against major pathogens. Fish and Shellfish Immunology, 34 (4), 990- 1001. DOI:

Arockiaraj, J., Gnanam, A.J., Pothikasalam, G., Milton, J., Pasupuleti, M., Bhatt, P., Palanisamy, R., Kumaresan, V., Thirumalai, M.K., Arasu, A., Sathyamoorthi, A., Prabha, N., 2013. A novel prophenoloxidase, hemocyanin encoded copper containing active enzyme from prawn: gene characterization. Gene, 524 (2), 139-151. DOI:

Baird, S., Kelly, S.M., Price, N.C., Jaenicke, E., Meesters, C., Nillius, D., Decker, H., Nairn, J., 2007. Hemocyanin conformational changes associated with SDS-induced phenol oxidase activation. Biochimica et Biophysica Acta - Proteins and Proteomics, 1774 (11), 1380-1394. DOI:

Battison, A., Cawthorn, R., Horney, B., 2003. Classification of Homarus americanus hemocytes and the use of differential hemocyte counts in lobsters infected with Aerococcus viridans var. homari (Gaffkemia). Journal of Invertebrate Pathology, 84 (3), 177-197. DOI:

Bauchau, A.G., 1981. Crustaceans. In: Ratcliffe, N.A., Powel, A.F. (eds.): Invertebrate Blood Cells. Academic Press, New York, pp. 385-420.

Beauchamp, C., Fridovich, I., 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44 (1), 276-287. DOI:

Becking, T., Delaunay, C., Cordaux, R., Berjeaud, J.M., Braquart-Varnier, C., Verdon, J., 2020. Shedding light on the antimicrobial peptide arsenal of terrestrial isopods: focus on armadillidins, a new crustacean AMP family. Genes, 11 (1), 93. DOI:

Bogataj, U., Mrak, P., Štrus, J., Žnidaršič, N., 2019. Ultrastructural differentiation of plasma membrane and cell junctions in the hindgut cells is synchronized with key developmental transitions in Porcellio scaber. Arthropod Structure and Development, 50, 78-93. DOI:

Boraschi, D., Alijagic, A., Auguste, M., Barbero, F., Ferrari, E., Hernadi, S., Mayall, C., Michelini, S., Navarro, N.P.I., Prinelli A., Swart E., Swartzwelter B. J., Bastús N. G., Canesi L., Drobne D., Duschl A., Ewa, M.A., Horejs-Hoeck, J., Italiani, P., Kemmerling, B., Kille, P., Prochazkova, P., Puntes, V.F., Spurgeon, D.J., Svendsen, C., Wilde, C.J., Pinsino, A., 2020. Addressing nanomaterial immunosafety by evaluating innate immunity across living species. Small, 16 (21), 2000598. DOI:

Buchon, N., Silverman, N., Cherry, S., 2014. Immunity in Drosophila melanogaster-from microbial recognition to whole-organism physiology. Nature Reviews Immunology, 14 (12), 796-810. DOI:

Cerenius, L., Lee, B.L., Söderhäll, K., 2008. The proPO-system: pros and cons for its role in invertebrate immunity. Trends in Immunology, 29 (6), 263-271. DOI:

Cerenius, L., Söderhäll, K., 2004. The prophenoloxidase-activating system in invertebrates. Immunological Reviews, 198 (1), 116-126. DOI:

Chevalier, F., Herbiniére-Gaboreau, J., Bertaux, J., Raimond, M., Morel, F., Bouchon, D., Grѐve, P., Braquart-Varnier, C., 2011. The immune cellular effectors of terrestrial isopod Armadillidium vulgare: meeting with their invaders, Wolbachia. PLoS One, 6 (4), e18531. DOI:

Chevalier, F., Herbinière-Gaboreau, J., Charif, D., Mitta, G., Gavory, F., Wincker, P., Greve, P., BraquartVarnier, C., Bouchon, D., 2012. Feminizing Wolbachia: a transcriptomics approach with insights on the immune response genes in Armadillidium vulgare. BMC Microbiology, 12 (1), 1-18. DOI:

Coates, C.J., 2012. Hemocyanin-derived phenoloxidase; biochemical and cellular investigations of innate immunity. Doktorsko delo. Stirling, University of Stirling. Cole, A., Morris, J., 1980. A new iridovirus of two species of terrestrial isopods, Armadillidium vulgare

and Porcellio scaber. Intervirology, 14 (1), 21-30.

Da Silva, P.C., de Abreu, I.S., Cavalcante, L.A., De Barros, C.M., Allodi, S., 2015. Role of hemocytes in invertebrate adult neurogenesis and brain repair. Invertebrate Survival Journal, 12 (1), 142-154.

De Gregorio, E., Spellman, P.T., Tzou, P., Rubin, G.M., Lemaitre, B., 2002. The Toll and Imd pathways are the major regulators of the immune response in Drosophila. The EMBO Journal, 21 (11), 2568-2579. DOI:

Ding, Z., Du, J., Ou, J., Li, W., Wu, T., Xiu, Y., Meng, Q., Ren, Q., Gu, W., Xue, H., Tang, J., Wang, W., 2012. Classification of circulating hemocytes from the red swamp crayfish Procambarus clarkii and their susceptibility to the novel pathogen Spiroplasma eriocheiris in vitro. Aquaculture, 356, 371-380. DOI:

Dolar, A., 2021. Optimizacija metod za spremljanje procesov, povezanih z imunostjo pri kopenskih enakonožcih. Magistrsko delo. Univerza v Ljubljani, Biotehniška fakulteta. Dolar, A., Kostanjšek, R., Mayall, C., Drobne, D., Kokalj, A.J., 2020. Modulations of immune parameters caused by bacterial and viral infections in the terrestrial crustacean Porcellio scaber: Implications for potential markers in environmental research. Developmental and Comparative Immunology, 113, 103789. DOI:

Dolar, A., Selonen, S., van Gestel, C.A.M., Perc, V., Drobne, D., Kokalj, A.J., 2021. Microplastics, chlorpyrifos and their mixtures modulate immune processes in the terrestrial crustacean Porcellio scaber. Science of the Total Environment, 772, 144900. DOI:

Du, Z., Ji, Y., Ren, D., 2016. In-depth comparative transcriptome analysis of intestines of red swamp crayfish, Procambarus clarkii, infected with WSSV. Scientific Reports, 6 (1), 1-12. DOI:

Fan, T., Zhang, Y., Yang, L., Yang, X., Jiang, G., Yu, M., Cong, R., 2009. Identification and characterization of a hemocyanin-derived phenoloxidase from the crab Charybdis japonica. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 152 (2), 144-149. DOI:

Faraldo, A.C., Sá-Nunes, A., Del Bel, E.A., Faccioli, L.H., Lello, E., 2005. Nitric oxide production in blowfly hemolymph after yeast inoculation. Nitric Oxide, 13 (4), 240-246. DOI:

Ferreira, N.G., Morgado, R.G., Cunha, L., Novo, M., Soares, A.M., Morgan, A.J., Loureiro, S., Kille, P., 2019. Unravelling the molecular mechanisms of nickel in woodlice. Environmental Research, 176, 108507. DOI:

Halcrow, K., Smith, J.C., 1986. Wound closure in the crab Carcinus maenas (L.). Canadian Journal of Zoology, 64 (12), 2770-2778. DOI:

Hames, C.A.C., Hopkin, S.P., 1989. The structure and function of the digestive system of terrestrial isopods. Journal of Zoology, 217 (4), 599-627. DOI:

Hauton, C., 2012. The scope of the crustacean immune system for disease control. Journal of Invertebrate Pathology, 110 (2), 251-260. DOI:

Herbinière, J., Braquart-Varnier, C., Grève, P., Strub, J.M., Frère, J., Van Dorsselaer, A., Martin, G., 2005. Armadillidin: a novel glycine-rich antibacterial peptide directed against gram-positive bacteria in the woodlouse Armadillidium vulgare (terrestrial isopod, crustacean). Developmental and Comparative Immunology, 29 (6), 489-499. DOI:

Hess, R.T., Poinar, G.O., 1985. Iridoviruses infecting terrestrial isopods and nematodes. Current Topics in Microbiology and Immunology, 116, 49-76. DOI:

Huang, Y., Ren, Q., 2020. Research progress in innate immunity of freshwater crustaceans. Developmental and Comparative Immunology, 104, 103569. DOI:

Ihan, A. 2020: Osnove medicinske imunologije. Medicinska fakulteta, Inštitut za mikrobiologijo in imunologijo, Katedra za mikrobiologijo in imunologijo, Ljubljana, 223 pp.

Irmak, P., Kurtz, J., Zimmer, M., 2005. Immune response in Porcellio scaber (Isopoda: Oniscidea): copper revisited. European Journal of Soil Biology, 41 (3–4), 77-83. DOI:

Jaenicke, E., Fraune, S., May, S., Irmak, P., Augustin, R., Meesters, C., Decker, H., Zimmer, M., 2009. Is activated hemocyanin instead of phenoloxidase involved in immune response in woodlice? Developmental and Comparative Immunology, 33 (10), 1055-1063. DOI:

Jemec, A., Tišler, T., Drobne, D., Sepčić, K., Jamnik, P., Roš, M., 2008. Biochemical biomarkers in chronically metal-stressed daphnids. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 147 (1), 61-68. DOI:

Jia, Z., Wang, L., Jiang, S., Sun, M., Wang, M., Yi, Q., Song, L., 2017. Functional characterization of hemocytes from Chinese mitten crab Eriocheir sinensis by flow cytometry. Fish and Shellfish Immunology, 69, 15-25. DOI:

Jin, X.K., Li, W.W., Wu, M.H., Guo, X.N., Li, S., Yu, A.Q., Zhu, Y.T., He, L., Wang Q., 2013. Immunoglobulin superfamily protein Dscam exhibited molecular diversity by alternative splicing in hemocytes of crustacean, Eriocheir sinensis. Fish and Shellfish Immunology, 35 (3), 900-909. DOI:

Jiravanichpaisal, P., Lee, B.L., Söderhäll, K., 2006. Cell-mediated immunity in arthropods: hematopoiesis, coagulation, melanization and opsonization. Immunobiology, 211 (4), 213-236. DOI:

Jussila, J., Jago, J., Tsvetnenko, E., Dunstan, B., Evans, L.H., 1997. Total and differential haemocyte counts in western rock lobsters (Panulirus cygnus George) under post-harvest stress. Marine and Freshwater research, 48 (8), 863-868. DOI:

Kostanjšek, R., Marolt, T.P., 2015. Pathogenesis, tissue distribution and host response to Rhabdochlamydia porcellionis infection in rough woodlouse Porcellio scaber. Journal of Invertebrate Pathology, 125, 56-67. DOI:

Kotnik, V., Čurin-Šerbec, V., Pretnar-Hartman, K., Ihan, A., Jeras, M., Kopitar, A.N., Malovrh, T., Simčič, S., Stopinšek, S., Skvarč, M., Vidan-Jeras, B., Wraber-Herzog, B., 2010. Imunološki priročnik. Medicinska fakulteta, Inštitut za mikrobiologijo in imunologijo, Katedra za mikrobiologijo in imunologijo, Ljubljana, 194 pp.

Labaude, S., Moret, Y., Cézilly, F., Reuland, C., Rigaud, T., 2017. Variation in the immune state of Gammarus pulex (Crustacea, Amphipoda) according to temperature: Are extreme temperatures a stress? Developmental and Comparative Immunology, 76, 25-33. DOI:

Lee, S.Y., Lee, B.L., Söderhäll, K., 2004. Processing of crayfish hemocyanin subunits into phenoloxidase. Biochemical and biophysical research communications, 322 (2), 490-496. DOI:

Li, F., Xiang, J., 2013. Signaling pathways regulating innate immune responses in shrimp. Fish and hellfish Immunology, 34 (4), 973-980. DOI:

Lin, X, Söderhäll, I., 2011. Crustacean hematopoiesis and the astakine cytokines. Blood, 117, 6417-6424. DOI:

Liu, S., Zheng, S.C., Li, Y.L., Li, J., Liu, H.P., 2020. Hemocyte-mediated phagocytosis in crustaceans. Frontiers in Immunology, 11, 268. DOI:

Loker, E.S., Adema, C.M., Zhang, S.M., Kepler, T.B., 2004. Invertebrate immune systems–not homogeneous, not simple, not well understood. Immunological Reviews, 198 (1), 10-24. DOI:

Lupetti, P., Montesanto, G., Ciolfi, S., Marri, L., Gentile, M., Paccagnini, E., Lombardo, B.M., 2013. Iridovirus infection in terrestrial isopods from Sicily (Italy). Tissue Cell, 45 (5), 321-327. DOI:

Lv, S., Xu, J., Zhao, J., Yin, N., Lu, B., Li, S., Chen, Y., Xu, H., 2014. Classification and phagocytosis of circulating haemocytes in Chinese mitten crab (Eriocheir sinensis) and the effect of extrinsic stimulation on circulating haemocytes invivo. Fish and Shellfish Immunology, 39 (2), 415-422. DOI:

Mangkalanan, S., Sanguanrat, P., Utairangsri, T., Sritunyalucksana, K., Krittanai, C., 2014. Characterization of the circulating hemocytes in mud crab (Scylla olivacea) revealed phenoloxidase activity. Developmental and Comparative Immunology, 44 (1), 116-123. DOI:

Martin, G.G., Graves, B.L., 1985. Fine structure and classification of shrimp hemocytes. Journal of Morphology, 185- (3), 339-348. DOI:

Matatall, K.A., Kadmon, C.S., King, K.Y., 2018. Detecting hematopoietic stem cell proliferation using BrdU incorporation. In: Lacorazza, H. (ed.): Cellular Quiescence. Humana Press, New York, pp. 91-103. DOI:

Mayall, C., Dolar, A., Jemec Kokalj, A., Novak, S., Razinger, J., Barbero, F., Puntes, V., Drobne, D., 2021. Stressor-dependant changes in immune parameters in the terrestrial isopod crustacean, Porcellio scaber: A focus on nanomaterials. Nanomaterials, 11 (4), 934. DOI:

Melillo, D., Marino, R., Italiani, P., Boraschi, D., 2018. Innate immune memory in invertebrate metazoans: a critical appraisal. Frontiers in Immunology, 9, 1915. DOI:

Mikrobiološki slovar, 2013. (3. 5. 2021).

Milutinović, B., Peuß, R., Ferro, K., Kurtz, J., 2016. Immune priming in arthropods: an update focusing on the red flour beetle. Zoology, 119 (4), 254-261. DOI:

Morin-Poulard, I., Vincent, A., Crozatier, M., 2013. The Drosophila JAK-STAT pathway in blood cell formation and immunity. Jak-Stat, 2 (3), e25700. DOI:

Pan, L., Zhang, X., Yang, L., Pan, S., 2019. Effects of Vibro harveyi and Staphyloccocus aureus infection on hemocyanin synthesis and innate immune responses in white shrimp Litopenaeus vannamei. Fish and Shellfish Immunology, 93, 659-668. DOI:

Pless, D.D., Aguilar, M.B., Falcón, A., Lozano-Alvarez, E., de la Cotera, E.P.H., 2003. Latent phenoloxidase activity and N-terminal amino acid sequence of hemocyanin from Bathynomus giganteus, a primitive crustacean. Archives of Biochemistry and Biophysics, 409 (2), 402-410. DOI:

Raman, T., Arumugam, M., Mullainadhan, P., 2008. Agglutinin-mediated phagocytosis-associated generation of superoxide anion and nitric oxide by the hemocytes of the giant freshwater prawn Macrobrachium rosenbergii. Fish and Shellfish Immunology, 24 (3), 337-345. DOI:

Ramasamy, S.M., Denis, M., Sivakumar, S., Munusamy, A., 2017. Phenoloxidase activity in humoral plasma, hemocyanin and hemocyanin separated proteins of the giant freshwater prawn Macrobrachium rosenbergii. International Journal of Biological Macromolecules, 102, 977-985. DOI:

Ramlingam, K., Rajan, U.B., Kumaran, N.S., Jaffar, A., 2015. Hemocytes profile of mud crab Scylla tranquebarica - an analysis of light, phase contrast and electron microscopic observation. Journal of Marine Biosciences, 1 (1), 20-32.

Rebelo, M. de F., Figueiredo, E. de S., Mariante, R.M., Nóbrega, A., de Barros, C.M., Allodi, S., 2013. New insights from the oyster Crassostrea rhizophorae on bivalve circulating hemocytes. PloS One, 8 (2), e57384. DOI:

Rosa, R.D., Barracco, M.A., 2010. Antimicrobial peptides in crustaceans. Invertebrate Survival Journal, 7 (2), 262-284.

Roulston, C., Smith, V.J., 2011. Isolation and in vitro characterisation of prohaemocytes from the spider crab, Hyas araneus (L.). Developmental and Comparative Immunology, 35 (5), 537-544. DOI:

Rowley, A.F., Powell, A., 2007. Invertebrate immune systems–specific, quasi-specific, or nonspecific? The Journal of Immunology, 179 (11), 7209-7214. DOI:

Sicard, M., Chevalier, F., De Vlechouver, M., Bouchon, D., Grève, P., Braquart-Varnier, C., 2010. Variations of immune parameters in terrestrial isopods: a matter of gender, aging and Wolbachia. Naturwissenschaften, 97 (9), 819-826. DOI:

Smith, V.J., Brown, J.H., Hauton, C., 2003. Immunostimulation in crustaceans: does it really protect against infection? Fish and Shellfish Immunology, 15 (1), 71-90. DOI:

Smith, V.J., Dyrynda, E.A., 2015. Antimicrobial proteins: from old proteins, new tricks. Molecular Immunology, 68 (2), 383-398. DOI:

Smith, V.J., Söderhäll, K., 1991. A comparison of phenoloxidase activity in the blood of marine invertebrates. Developmental and Comparative Immunology, 15 (4), 251-261. DOI:

Snyman, R.G., Odendaal, J.P., 2009. Effect of cadmium on haemocyte viability of the woodlouse Porcellio laevis (Isopoda, Crustacea). Bulletin of Environmental Contamination and Toxicology, 83 (4), 525-529. DOI:

Söderhäll, I., 2016. Crustacean hematopoiesis. Developmental and Comparative Immunology, 58, 129-141. DOI:

Söderhäll, I., Bangyeekhun, E., Mayo, S., Söderhäll, K., 2003. Hemocyte production and maturation in an invertebrate animal; proliferation and gene expression in hematopoietic stem cells of Pacifastacus leniusculus. Developmental and Comparative Immunology, 27 (8), 661-672. DOI:

Söderhäll, K, Cerenius, L., 1992. Crustacean immunity. Annual Review of Fish Diseases, 2, 3-23. DOI:

Tassanakajon, A., Rimphanitchayakit, V., Visetnan, S., Amparyup, P., Somboonwiwat, K., Charoensapsri, W., Tang, S., 2018. Shrimp humoral responses against pathogens: antimicrobial peptides and melanization. Developmental and Comparative Immunology, 80, 81-93. DOI:

Tassanakajon, A., Somboonwiwat, K., Supungul, P., Tang, S., 2013. Discovery of immune molecules and their crucial functions in shrimp immunity. Fish and Shellfish Immunology, 34 (4), 954-967. DOI:

Tesovnik, T., Cizelj, I., Zorc, M., Čitar, M., Božič, J., Glavan, G., Narat, M., 2017. Immune related gene expression in worker honey bee (Apis mellifera carnica) pupae exposed to neonicotinoid thiamethoxam and Varroa mites (Varroa destructor). PLoS One, 12 (10), e0187079. DOI:

Tran, N.T., Kong, T., Zhang, M., Li, S., 2020. Pattern recognition receptors and their roles on the innate immune system of mud crab (Scylla paramamosain). Developmental and Comparative Immunology, 102, 103469. DOI:

Uhrík, B., Rýdlová, K., Zacharová, D., 1989. The roles of haemocytes during degeneration and regeneration of crayfish muscle fibres. Cell and Tissue Research, 255 (2), 443-449. DOI:

Van de Braak, C.B.T., Botterblom, M.H.A., Liu, W., Taverne, N., Van der Knaap, W.P.W., Rombout, J.H.W.M., 2002. The role of the haematopoietic tissue in haemocyte production and maturation in the black tiger shrimp (Penaeus monodon). Fish Shellfish Immunol, 12, 253-272. DOI:

Van Der Zande, M., Kokalj, A.J., Spurgeon, D.J., Loureiro, S., Silva, P.V., Khodaparast, Z., Drobne, D., Clark, J.N., van den Brink, N.W., Baccaro, M., van Gestel, C.A.M., Bouwmeester, H., Handy, R.D., 2020. The gut barrier and the fate of engineered nanomaterials: a view from comparative physiology. Environmental Science: Nano, 7 (7), 1874-1898. DOI:

Wang, X.W., Wang, J.X., 2013. Pattern recognition receptors acting in innate immune system of shrimp against pathogen infections. Fish and Shellfish Immunology, 34, 981-989. DOI:

Xu, Z., Liu, A., Li, S., Wang, G., Ye, H., 2020. Hepatopancreas immune response during molt cycle in the mud crab, Scylla paramamosain. Scientific Reports, 10 (1), 1-14. DOI:

Zhou, Y.L., Gu, W.B., Tu, D.D., Zhu, Q.H., Zhou, Z.K., Chen, Y.Y., Shu, M.A., 2018. Hemocytes of the mud crab Scylla paramamosain: cytometric, morphological characterization and involvement in immune responses. Fish and Shellfish Immunology, 72, 459-469. DOI:






Original Research Paper

How to Cite

Dolar, A., Drobne, D., Kostanjšek, R., & Jemec Kokalj, A. (2021). Immune system in crustaceans: a presentation of research with terrestrial crustacean Porcellio scaber. Acta Biologica Slovenica, 64(1), 18-35.

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)