UV radiation and temperature effects on functional traits in Helianthemum nummularium subsp. grandiflorum at the alpine and montane site in the Slovenian Alps


  • Tadeja Trošt Sedej
  • Rok Damjanič




Helianthemum nummularium, leaf optical properties, pigments, UV radiation


Alpine plants have evolved strategies to survive harsh conditions, which include high UV and visible radiation, extreme temperatures, dryness and lack of nutrients. Survival strategies include biochemical, physiological and morphological responses, which are scarcely studied because of the time-demanding and complex experimental conditions. We researched functional traits in the alpine plant common rockrose Helianthemum nummularium subsp. grandiflorum growing under ambient UV-B and reduced UV-B radiation at different altitudes (1600 and 2000 m a.s.l.) of mount Vogel in the Slovenian Alps. Leaf anatomy, pigments and optical properties were investigated at the beginning and at the end of the growing season. Plants showed high constitutive UV-absorbing compounds content (UV-AC) throughout the season. Most leaf thickness parameters were not altered according to UV and altitude conditions. Leaves did not transmit any UV spectrum, in agreement with high UV-AC. High photosynthetic spectrum transmittance at alpine altitudes was due to complex biochemical and anatomical responses to these conditions, rather than to UV radiation. Unchanged chlorophyll content of H. nummularium could be related to shrub life form, where leaves shade out high UV and PAR irradiance as well as contribute to lower leaf temperature. This study shows the complexity of alpine plant response, where
specific characteristics of plant species should not be overlooked.


Albert, A., Sareedenchai, V., Heller, W., Seidlitz, H.K., Zidorn, C., 2009. Temperature is the key to altitudinal variation of phenolics in Arnica montana L. cv. ARBO. Oecologia, 160, 1-8. DOI: https://doi.org/10.1007/s00442-009-1277-1

Barnes, P.W., Ryel, R.J., Flint, S.D., 2017. UV screening in native and non-native plant species in the tropical alpine: Implications for climate change-driven migration of species to higher elevations. Frontiers in Plant Science, 8, 1451. DOI: https://doi.org/10.3389/fpls.2017.01451

Barsig, M., Malz, R., 2000. Fine structure, carbohydrates and photosynthetic pigments of sugar maize leaves under UV-B radiation. Environmental and Experimental Botany, 43, 21-130. DOI: https://doi.org/10.1016/S0098-8472(99)00049-0

Bassman, J.H., Edwards, G.E., Robberecht, R., 2003. Photosynthesis and growth in seedlings of five forest tree species with contrasting leaf anatomy subjected to supplemental UV-B radiation. Forest Science, 49, 176-187.

Biswas, D.K., Jansen, M.A.K., 2012. Natural variation in UV-B protection amongst Arabidopsis thaliana accessions. Emirates Journal of Food and Agriculture, 24, 621-631. DOI: https://doi.org/10.9755/ejfa.v24i6.621631

Björn, L.O., Murphy, T.M., 1993. Computer calculation of solar UV radiation at ground level. In: Young, A.R., Björn, L.O., Moan, J., Nultsch, W. (eds): Environmental UV Photobiology, Plenum Press, New York, pp. 63-69.

Bornman, J.F., Vogelmann, T.C., 1991. Effect of UV-B radiation on leaf optical-properties measured with fiber optics. Journal of Experimental Botany, 42, 547-554. DOI: https://doi.org/10.1093/jxb/42.4.547

Caldwell, M.M., 1968. Solar ultraviolet radiation as an ecological factor for alpine plants. Ecological Monographs, 38, 243-268. DOI: https://doi.org/10.2307/1942430

Caldwell, M.M., Camp, L.B., Warner, C.W., Flint, S.D., 1986. Action spectra and their key role in assessing biological consequences of solar UV-B radiation. In: Worrest, R.C., Caldwell, M.M. (eds.): Stratospheric Ozone Reduction, Solar Ultraviolet Radiation and Plant Life, Springer, Heidelberg, pp. 87-111. DOI: https://doi.org/10.1007/978-3-642-70090-3_6

Chalker-Scott, L., Scott, J.D., 2004. Elevated ultraviolet-B radiation induces cross-protection to cold in leaves of Rhododendron under field conditions. Photochemical & Photobiological Sciences, 9, 199-204. DOI: https://doi.org/10.1562/0031-8655(2004)079<0199:EURICT>2.0.CO;2

Czégény, G., Mátai, A., Hideg, É., 2016. UV-B effects on leaves - Oxidative stress and acclimation in controlled environments. Plant Science, 248, 57-63. DOI: https://doi.org/10.1016/j.plantsci.2016.04.013

Day, T.A., Vogelmann, T.C., DeLucia, E.H., 1992. Are some life forms more effective than others in screening out ultraviolet-B radiation? Oecologia, 92, 513-519. DOI: https://doi.org/10.1007/BF00317843

DeLucia, E.H., Berlyn, G.P., 1984. The effect of increasing elevation on leaf cuticle thickness and cuticular transpiration in balsam fir. Canadian Journal of Botany, 62, 2423-243. DOI: https://doi.org/10.1139/b84-331

Gruber, H., Heijde, M., Heller, W., Albert, A., Seidlitz, H.K., Ulm, R., 2010. Negative feedback regulation of UV-B induced photomorphogenesis and stress acclimation in Arabidopsis. Proceedings of the National Academy of Sciences, 107, 20132-20137. DOI: https://doi.org/10.1073/pnas.0914532107

Guidi, L., Degl’Innocenti, E., Remorini, D., Biricolti, S., Fini, A., Ferrini, F., Nicese, F.P., Tattini, M., 2011. The impact of UV-radiation on the physiology and biochemistry of Ligustrum vulgare exposed to different visible-light irradiance. Environmental and Experimental Botany, 70, 88-95. DOI: https://doi.org/10.1016/j.envexpbot.2010.08.005

Hideg, E., Jansen, M.A.K., Strid, A., 2013. UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates? Trends in Plant Sciences, 18, 107-115. DOI: https://doi.org/10.1016/j.tplants.2012.09.003

Ibanez, S., Rosa, M., Hilal, M., Gonzalez, J.A., Prado, F.E., 2008. Leaves of Citrus aurantifolia exhibit a different sensibility to solar UV-B radiation according to development stage in relation to photosynthetic pigments and UV-B absorbing compounds production. Journal of Photochemistry and Photobiology B: Biology, 90, 163-169. DOI: https://doi.org/10.1016/j.jphotobiol.2008.01.002

Jansen, A.K., Le Martret, B., Koornneef, M., 2010. Variations in constitutive and inducible UV-B tolerance; dissecting photosystem II protection in Arabidopsis thaliana accessions. Physiologia Plantarum, 138(1), 22-34. DOI: https://doi.org/10.1111/j.1399-3054.2009.01293.x

Jansen, M.A.K., 2002. Ultraviolet-B radiation effects on plants: induction of morphogenic responses. Physiologia Plantarum, 116, 423-429. DOI: https://doi.org/10.1034/j.1399-3054.2002.1160319.x

John, C.F., Morris, K., Jordan, B.R., Thomas, B., Mackerness, S.A.H., 2001. Ultraviolet exposure leads to up-regulation of senescence associated genes in Arabidopsis thaliana. Journal of Experimental Botany, 52, 1367-1373. DOI: https://doi.org/10.1093/jexbot/52.359.1367

Kataria, S., Jajoo, A., Guruprasad, K.N., 2014. Impact of increasing ultraviolet-B (UV-B) radiation on photosynthetic processes. Journal of Photochemistry and Photobiology B: Biology, 137, 55-66. DOI: https://doi.org/10.1016/j.jphotobiol.2014.02.004

Körner, C., 2003. The climate plants experience. In: Alpine plant life: Functional plant ecology of high mountain ecosystems, Springer, Berlin, Heidelberg, pp. 31-46. DOI: https://doi.org/10.1007/978-3-642-18970-8_4

Liew, O.W., Chong, P.C.J., Li, B., Asundi, A.K., 2008. Signature optical cues: Emerging technologies for monitoring plant health. Sensors, 8, 3205-3239. DOI: https://doi.org/10.3390/s8053205

Martinčič, A., Wraber, T., Jogan, N., Podobnik, A., Turk, B., Vreš, B., Ravnik, V., Frajman, B., Strgulc Krajšek, S., Trčak, B., Bačič, T., Fischer, MA., Eler, K., Surina, B., 2010. Mala flora Slovenije, Ključ za določanje praprotnic in semenk, 4th Edn, Tehniška založba Slovenije, Ljubljana, 967 pp.

Middleton, E.M., Teramura, A.H., 1993. The role of flavonol glycosides and carotenoids in protecting soybean from ultraviolet-B damage. Plant Physiology, 103, 741-752. DOI: https://doi.org/10.1104/pp.103.3.741

Nicotra, A.B., Atkin, O.K., Bonser, S.P., Davidson, A.M., Finnegan, E., Mathesius, U., 2010. Plant phenotypic plasticity in a changing climate. Trends in Plant Sciences, 15, 684-92. DOI: https://doi.org/10.1016/j.tplants.2010.09.008

Nogues, S., Allen, D.J., Morison, J.I.L., Baker, N.R., 1999. Characterization of stomatal closure caused by ultraviolet-B radiation. Plant Physiology, 121, 489-496. DOI: https://doi.org/10.1104/pp.121.2.489

Porra, R.J., Thompson, W.A., Kriedemann, P.E., 1989. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: DOI: https://doi.org/10.1016/S0005-2728(89)80347-0

verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. BBA – Bioenergetics, 975(3), 384–394.

Qaderi, M.M., Yeung, W.C., Reidm, D.M., 2008. Growth and physiological responses of an invasive alien species, Silene noctiflora, during two developmental stages to four levels of ultraviolet-B radiation. Ecoscience, 15, 150-159. DOI: https://doi.org/10.2980/15-2-3052

Robson, M.T., Klem, K., Urban, O., Jansen, M.A.K., 2015. Re-interpreting plant morphological responses to UV-B radiation. Plant, Cell & Environment, 38, 856-866. DOI: https://doi.org/10.1111/pce.12374

Searles, P.S., Flint, S.D., Caldwell, M.M., 2001. A meta analysis of plant field studies simulating stratospheric ozone depletion. Oecologia, 127, 1-10. DOI: https://doi.org/10.1007/s004420000592

Smith, J.L., Burritt, D.J., Bannister, P., 2000. Shoot dry weight, chlorophyll and UV-B absorbing compounds as indicators of a plant’s sensitivity to UV-B radiation. Annals of Botany, 86, 1057-1066. DOI: https://doi.org/10.1006/anbo.2000.1270

Teramura, A.H., 1983. Effects of ultraviolet-B radiation on the growth and yield of crop plants. Physiologia Plantarum, 58, 415-427. DOI: https://doi.org/10.1111/j.1399-3054.1983.tb04203.x

Terfa, M.T., Roro, A.G., Olsen, J.E., Torre, S., 2014. Effects of UV radiation on growth and postharvest characteristics of three pot rose cultivars grown at different altitudes. Scientia Horticulturae, 178, 184-191. DOI: https://doi.org/10.1016/j.scienta.2014.08.021

Trošt Sedej, T., Erznožnik, T., Rovtar, J., 2020. Effect of UV radiation and altitude characteristics on the functional traits and leaf optical properties in Saxifraga hostii at the alpine and montane sites in the Slovenian Alps. Photochemical & Photobiological Sciences, 19(2), 180-192. DOI: https://doi.org/10.1039/c9pp00032a

Trošt Sedej, T., Gaberščik, A., 2008. The effects of enhanced UV-B radiation on physiological activity and growth of Norway spruce planted outdoors over 5 years. Trees, 22, 423-435. DOI: https://doi.org/10.1007/s00468-007-0203-6

Turunen, M., Latola, K., 2005. UV-B radiation and acclimation in timberline plants. Environmental Pollution, 137, 390-403. DOI: https://doi.org/10.1016/j.envpol.2005.01.030

Ustin, S.L., Jacquemoud, S., 2020. How the optical properties of leaves modify the absorption and scattering of energy and enhance leaf functionality. In: Cavender-Bares J, Gamon JA, Townsend PA (eds) Remote sensing of plant biodiversity. Springer, 349-384. DOI: https://doi.org/10.1007/978-3-030-33157-3_14

Verdaguera, D., Jansen, M.A.K., Llorensa, L., Morales, L.O., Neugart, S., 2017. UV-A radiation effects on higher plants: Exploring the known unknown. Plant Science, 255, 72-81. DOI: https://doi.org/10.1016/j.plantsci.2016.11.014

Volkova, P.A., Schanzer, I.A., Soubani, E., Meschersky, I.G., Widen, B., 2016. Phylogeography of the European rock rose Helianthemum nummularium s.l. (Cistaceae): Western richness and eastern poverty. Plant Systematics and Evolution, 302, 781–794. DOI: https://doi.org/10.1007/s00606-016-1299-1

Wargent, J.J., Elfadly, E.M., Moore, J.P., Paul, N.D., 2011. Increased exposure to UV-B radiation during early development leads to enhanced photoprotection and improved long-term performance in Lactuca sativa. Plant, Cell & Environment, 34, 1401-1413. DOI: https://doi.org/10.1111/j.1365-3040.2011.02342.x

Wargent, J.J., Moore, J.P., Ennos, A.R., Paul, N.D., 2009. Ultraviolet radiation as a limiting factor in leaf expansion and development. Photochemistry and Photobiology, 85, 279-286. DOI: https://doi.org/10.1111/j.1751-1097.2008.00433.x

Xu, J., Gao, K., 2010. UV-A enhanced growth and UV-B induced positive effects in the recovery of photochemical yield in Gracilaria lemaneiformis (Rhodophyta). Journal of Photochemistry and Photobiology B: Biology, 100, 117-122. DOI: https://doi.org/10.1016/j.jphotobiol.2010.05.010

Ziska, L.H., Teramura, A.H., Sullivan, J.H., 1992. Physiological sensitivity of plants along an elevational gradient to UV-B radiation. American Journal of Botany, 79, 863-871. DOI: https://doi.org/10.1002/j.1537-2197.1992.tb13667.x






Original Research Paper

How to Cite

Trošt Sedej, T., & Damjanič, R. (2021). UV radiation and temperature effects on functional traits in Helianthemum nummularium subsp. grandiflorum at the alpine and montane site in the Slovenian Alps. Acta Biologica Slovenica, 64(1), 41-55. https://doi.org/10.14720/abs.64.1.15763

Similar Articles

1-10 of 48

You may also start an advanced similarity search for this article.