Fluorescent markers in microscopy: photophysical characteristics and applications in cell biology

Authors

  • Urban Bogataj
  • Jasna Štrus
  • Nada Žnidaršič
  • Marko Kreft

DOI:

https://doi.org/10.14720/abs.59.2.15855

Keywords:

organic fluorochromes, fluorescent proteins, quantum dots, fluorescence microscopy, labelling

Abstract

In the fluorescence microscopy of biological specimens the structures in cells and tissues usually need to be labelled with various fluorescent markers. The three main groups of fluorescent markers are small organic fluorochromes, fluorescent proteins and quantum dots. Fluorescent markers differ according to photophysical properties and binding specificity for the selected target structures in the sample. For the labelling of specific structures with small organic fluorochromes or quantum dots it is usually necessary to conjugate them with target-specific macromolecules. For the labelling with fluorescent proteins it is necessary to introduce a fluorescent protein gene into the observed cells or organism. The most important photophysical properties of fluorescent markers are absorption and emission spectra, Stokes shift, extinction coefficient and quantum yield. Currently, various super-resolution fluorescent microscopy techniques exploit special fluorochromes that enable fluorescence modulation by specific wavelength illumination, to achieve the resolution below the diffraction limit.

References

Abbe, E., 1873. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für Mikroskopische Anatomie, 9, 413–418. DOI: https://doi.org/10.1007/BF02956173

Agrawal, U., Reilly, D.T., Schroeder, C.M., 2013. Zooming in on biological processes with fluorescence nanoscopy. Curr. Opin. Biotechnol., 24(4), 646-653. DOI: https://doi.org/10.1016/j.copbio.2013.02.016

Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M., Roberts, K., Walter, P., 2015. Molecular biology of the cell, 6th Ed. Garland Science, New York, 1464 pp.

Betzig, E., Patterson, G.H., Sougrat, R., Lindwasser, O.W., Olenych, S., Bonifacino, J.S., Davidson, M.W., Lippincot-Schwartz, J., Hess, H.F., 2006. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313(5793), 1642-1645. DOI: https://doi.org/10.1126/science.1127344

Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W., Prasher, D.C., 1994. Green fluorescent protein as a marker for gene expression. Science, 263(5148), 802-805. DOI: https://doi.org/10.1126/science.8303295

Chudakov, D.M., Lukyanov, S., Lukyanov, K.A., 2005. Fluorescent proteins as a toolkit for in vivo imaging. Trends Biotechnol., 23(12), 605-613. DOI: https://doi.org/10.1016/j.tibtech.2005.10.005

Darzynkiewicz, Z., Traganos, F., Staiano-Coico, L., Kapuscinski, J., Melamed, M.R., 1982. Interac- tion of rhodamine 123 with living cells studied by flow cytometry. Cancer. Res., 42(3), 799-806.

Fernandez-Suarez, M., Ting, A.Y., 2008. Fluorescent probes for super-resolution imaging in living cells. Nat. Rev. Mol. Cell. Biol., 9(12), 929-943. DOI: https://doi.org/10.1038/nrm2531

Giepmans, B.N., Deerinck, T.J., Smarr, B.L., Jones, Y.Z., Ellisman, M.H., 2005. Correlated light and electron microscopic imaging of multiple endogenous proteins using Quantum dots. Nat. Methods, 2(10), 743-749. DOI: https://doi.org/10.1038/nmeth791

Guček, A., Jorgačevski, J., Singh, P., Geisler, C., Lisjak, M., Vardjan, N., Kreft, M., Egner, A., Zorec, R., 2016. Dominant negative SNARE peptides stabilize the fusion pore in a narrow, release- unproductive state. Cell. Mol. Life Sci., 73, 3719-3731. DOI: https://doi.org/10.1007/s00018-016-2213-2

Gustafsson, M.G.L., 2000. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc., 198(2), 82-87. DOI: https://doi.org/10.1046/j.1365-2818.2000.00710.x

Heilemann, M., Dedecker, P., Hofkens, J., Sauer, M., 2009. Photoswitches: Key molecules for subdiffraction-resolution fluorescence imaging and molecular quantification. Laser Photonics Rev., 3(1-2), 180-202. DOI: https://doi.org/10.1002/lpor.200810043

Hell, S.W., Wichmann, J., 1994. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett., 19(11), 780-782. DOI: https://doi.org/10.1364/OL.19.000780

Hell, S.W., 2007. Far-field optical nanoscopy. Science, 316(5828), 1153-1158. DOI: https://doi.org/10.1126/science.1137395

Huang, B., Bates, M., Zhuang, X., 2009. Super-resolution fluorescence microscopy. Annu. Rev. Biochem., 78, 993-1016. DOI: https://doi.org/10.1146/annurev.biochem.77.061906.092014

Jaiswal, J.K., Mattoussi, H., Mauro, J.M., Simon, S.M., 2003. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol., 21(1), 47-51. DOI: https://doi.org/10.1038/nbt767

Johnson, I.D., Spence, M.T.Z., 2010. The molecular probes handbook: A guide to fluorescent probes and labeling technologies, 11th Edition. Life Technologies Corporation. Carlsbad, CA, 1060 pp. Johnson, W.L., Straight, A.F., 2013. Fluorescent protein applications in microscopy. In: Sluder, G., Wolf, D.E. (eds.): Methods in cell biology, vol. 114. Elsevier Academic Press, Inc., San Diego, CA, pp. 99-123.

Jorgačevski, J., Potokar, M., Grilc, S., Kreft, M., Liu, W., Barclay, J.W., Bückers, J., Medda, R., Hell, S.W., Parpura, V., Burgoyne, R.D., Zorec, R., 2011. Munc18-1 tuning of vesicle merger and fusion pore properties. J. Neurosci., 31(24), 9055-9066. DOI: https://doi.org/10.1523/JNEUROSCI.0185-11.2011

Kay, A.R., 2005. A practical guide: Imaging zinc in brain slices. In: Yuste, R., Konnerth, A. (eds.): Imaging in neuroscience and development. A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp. 491-494.

Kikuchi, K., Komatsu, K., Nagano, T., 2004. Zinc sensing for cellular application. Curr Opin. Chem. Biol., 8(2), 182-191. DOI: https://doi.org/10.1016/j.cbpa.2004.02.007

Klar, T.A., Jakobs, S., Dyba, M., Egner, A., Hell, S.W., 2000. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl. Acad. Sci. USA, 97(15), 8206-8010. Kreft, M., Jorgačevski, J., 2014. Mikroskopija, ki presega meje optične ločljivosti. Proteus, 76, 9-10. DOI: https://doi.org/10.1073/pnas.97.15.8206

Lavis, L.D., Raines, R.T., 2008. Bright ideas for chemical biology. ASC Chem Biol, 3(3), 142-155. Lichtman, J.W., Conchello, J.A., 2005. Fluorescence microscopy. Nat Methods, 2(12), 910-919. DOI: https://doi.org/10.1021/cb700248m

Lippincott-Schwarz, J., Patterson, G.H., 2003. Development and use of fluorescent protein markers in living cells. Science, 300(5616), 87-91. DOI: https://doi.org/10.1126/science.1082520

Marlowe, R.L., Dillaman, R.M., 1995. Acridine orange staining of decapod crustacean cuticle. In- vertebr. Biol., 114(1), 79-82. DOI: https://doi.org/10.2307/3226956

Medintz, I.L., Uyeda, H.T., Goldman, E.R., Mattoussi, H., 2005. Quantum dots bioconjugates for imaging, labelling and sensing. Nat. Mater., 4(6), 435-446. DOI: https://doi.org/10.1038/nmat1390

Milatovič, M., Kostanjšek, R., Štrus, J., 2010. Ontogenetic development of Porcellio scaber: staging based on microscopic anatomy. J. Crustac Biol., 30(2), 225-235. DOI: https://doi.org/10.1651/09-3189.1

Mittmann, B., Wolff, C., 2012. Embryonic development and staging of the cobweb spider Parasteatoda tepidariorum C. L. Koch, 1841 (syn.: Achaearanea tepidariorum; Araneomorphae; Theridiidae). Dev. Genes Evol., 222(4), 189-216. DOI: https://doi.org/10.1007/s00427-012-0401-0

Mittmann, B., Ungerer, P., Klann, M., Stollewerk, A., Wolff, C., 2014. Development and staging of the water flea Daphnia magna (Straus, 1820; Cladocera, Daphniidae) based on morphological landmarks. Evodevo, 5(1), doi: 10.1186/2041-9139-5-12. DOI: https://doi.org/10.1186/2041-9139-5-12

Murphy, D.B., 2001. Fundamentals of light microscopy and electronic imaging. Wiley-Liss, Inc., 368 pp.

Nowakowski, A.B., Meeusen, J.W., Menden, H., Tomasiewicz, H., Petering, D.H., 2015. Chemical- biological properties of zinc sensors TSQ and Zinquin: Formation of sensor-Zn-protein adducts versus Zn(Sensor)2 complexes. Inorg. Chem., 54(24), 11637-11647. DOI: https://doi.org/10.1021/acs.inorgchem.5b01535

Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R., Nann, T., 2008. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods, 5(9), 763-775. DOI: https://doi.org/10.1038/nmeth.1248

Rust, M.J., Bates, M., Zhuang, X., 2006. Sub-diffraction-limit imaging by stochastic optical recon- struction microscopy (STORM). Nat. Methods, 3(10), 793-795. DOI: https://doi.org/10.1038/nmeth929

Sandell, L.L., Kurosaka, H., Trainor, P.A., 2012. Whole mount nuclear fluorescent imaging: convenient documentation of embryo morphology. Genesis, 50(11), 844-850. DOI: https://doi.org/10.1002/dvg.22344

Schermelleh, L., Heintzmann, R., Leonhardt, H., 2010. A guide to super-resolution fluorescence microscopy. J. Cell. Biol., 190(2), 165-175. DOI: https://doi.org/10.1083/jcb.201002018

Shaner, N.C., Steinbach, P.A., Tsien, R.Y., 2005. A guide to choosing fluorescentproteins. Nat. Me- thods, 2(12), 905-909. DOI: https://doi.org/10.1038/nmeth819

Shaner, N.C., Patterson, G.H., Davidson, M.W., 2007. Advances in fluorescent protein technology. J. Cell. Sci., 120(24), 4247-4260. DOI: https://doi.org/10.1242/jcs.005801

Shimomura, O., Johnson, F.H., Saiga, Y., 1962. Extraction, purification and properties of aequorin, a bioluminescent protein from luminous hydromedusan, Aequorea. J. Cell. Comp. Physiol., 59, 223-239. DOI: https://doi.org/10.1002/jcp.1030590302

Shimomura, O., 2005. The discovery of aequorin and green fluorescent protein. J. Microsc., 217, 3-15. DOI: https://doi.org/10.1111/j.0022-2720.2005.01441.x

Smith, A.M., Duan, H., Mohs, A.M., Nie, S., 2008. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv. Drug Deliv. Rev., 60(11), 1226-1240. DOI: https://doi.org/10.1016/j.addr.2008.03.015

Snitsarev, V., Budde, T., Stricker, T.P., Cox, J.M., Krupa, D.J., Geng, L., Kay, A.R., 2001. Fluorescent de- tection of Zn2+-rich vesicles with Zinquin: Mechanism of action in lipid environments. Biophys. J., 80(3), 1538-1546. DOI: https://doi.org/10.1016/S0006-3495(01)76126-7

Stanisavljevic, M., Krizkova, S., Vaculovicova, M., Kizek, R., Adam, V., 2015. Quantum dots-fluore- scence resonance energy transfer-based nanosenzors and their applications. Biosens. Bioelectron., 74, 562-574. DOI: https://doi.org/10.1016/j.bios.2015.06.076

Stepanenko, O.V., Stepanenko, O.V., Shcherbakova, D.M., Kuznetsova, I.M., Turoverov, K.K., Verkhusha, V.V., 2011. Modern fluorescent proteins: from chromophore formation to novel intra- cellular applications. Biotechniques, 51(5), 313-327. DOI: https://doi.org/10.2144/000113765

Suzuki, T., Matsuzaki, T., Hagiwara, H., Aoki, T., Takata, K., 2007. Recent advances in fluorescent labeling techniques for fluorescence microscopy. Acta Histochem. Cytochem., 40(5), 131-137. DOI: https://doi.org/10.1267/ahc.07023

Terai, T., Nagano, T., 2013. Small-molecule fluorophores and fluorescent probes for bioimaging. Pflugers. Arch., 465(3), 347-359. DOI: https://doi.org/10.1007/s00424-013-1234-z

Tsien, R.Y., 1998. The green fluorescent protein. Annu Rev Biochem, 67, 509-544. DOI: https://doi.org/10.1146/annurev.biochem.67.1.509

Uno, S.N., Tiwari, D.K., Kamiya, M., Arai, Y., Nagai, T., Urano, Y., 2015. A guide to use photocon- trollable fluorescent proteins and synthetic smart fluorophores for nanoscopy. Microscopy (Oxf), 64(4), 263-277. DOI: https://doi.org/10.1093/jmicro/dfv037

Verkhusha, V.V., Lukyanov, K.A., 2004. The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins. Nat. Biotechnol., 22(3), 289-296. DOI: https://doi.org/10.1038/nbt943

Wang, F., Tan, W.B., Zhang, Y., 2006. Luminescent nanomaterials for biological labelling. Nano- technology, 17(1), R1-R13. DOI: https://doi.org/10.1088/0957-4484/17/1/R01

Zalewski, P.D., Millard, S.H., Forbes, I.J., Kapaniris, O., Slavotinek, A., Betts, W.H., Ward, A.D., Lincoln, S.F., Mahadevan, I., 1994. Video image analysis of labile zinc in viable pancreatic islet cells using a specific fluorescent probe for zinc. J. Histochem. Cytochem., 42(7), 877-884. DOI: https://doi.org/10.1177/42.7.8014471

Zhang, Y., Campbell, R.E., Ting, A.Y., Tsien, R.Y., 2002. Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell. Biol., 3(12), 906-918. DOI: https://doi.org/10.1038/nrm976

Downloads

Published

01.12.2016

Issue

Section

Original Research Paper

How to Cite

Bogataj, U., Štrus, J., Žnidaršič, N., & Kreft, M. (2016). Fluorescent markers in microscopy: photophysical characteristics and applications in cell biology. Acta Biologica Slovenica, 59(2), 27-46. https://doi.org/10.14720/abs.59.2.15855

Similar Articles

11-20 of 39

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)