Seasonal dynamics of fungal colonisation of Plantago altissima roots in a water-fluctuating wetland


  • Daniela M. Vengust
  • Alenka Gaberščik



intermittent lake, Plantago altissima, roots, fungal colonisation, arbuscular mycorrhiza, dark septate endophytes


Fungal colonisation in an amphibious plant species from an intermittent lake may differ significantly among plant specimens growing under contrasting water regimes. We examined the effect of the presence of surface water on the level of fungal colonisation in tall plantain(Plantago altissima L.). We investigated the presence and abundance of arbuscular-mycorrhizal (AM) structures, dark-septate-endophyte (DSE) fungal structures, and plant growth parameters. The observed overall frequency of fungal structures during the vegetative season was relatively high, ranging from 50% to 90%. Mycorrhizal frequency was little affected by water level fluctuations. However, it dropped significantly at the end of the season in the senescence phase. The densities of arbuscules, vesicles, and hyphal coils reached the highest levels in peak season in June and July. The density of DSE structures, namely microsclerotia, showed similar dynamics over the season as forAM structures. Mycorrhizal frequency was positively related to leaf water content.


Asmelash, F., Bekele, T., Birhane, E., 2016. The potential role of arbuscular mycorrhizal fungi in the restoration of degraded lands. Front. Microbiol., 7, 1095. DOI:

Ayres, R.L., Gange, A.C., Aplin, D.M., 2006. Interactions between arbuscular mycorrhizal fungi and intraspecific competition affect size, and size inequality, of Plantago lanceolata L. J. Ecol., 94, 85–294. DOI:

Augé, R.M., 2004. Arbuscular mycorrhizae and soil/plant water relations. Can. J. Soil Sci., 84, 373–381. DOI:

Boeger, M.R.T., Poulson, M.E., 2003. Morphological adaptations and photosynthetic rates of amphi- bious Veronica anagallis-aquatica L. (Schropulariaceae) underdifferent flow regimes. Aquatic Botany, 75, 123–135. DOI:

Bonfante, P., Genre, A., 2010. Mechanisms underlying beneficial plant–fungus interactions in mycorrhi- zal symbiosis. Nat. Commun, 1, 48. DOI:

Boulton, A.J., Brock, M.A., 1999. Australian Freshwater Ecology: Processes and Management. Gle- neagles Publishing, Glen Osmond, Australia.

Braendle, R., Crawford, R.M.M., 1999. Plants as amphibians. Perspectives in Plant Ecology, Evolution and Systematics, 2, 56–78. DOI:

Brooker, R.W., Maestre, F.T., Callaway, R.M., Michalet, R., 2008. Facilitation in plant communities: the past, the present, and the future. J. Ecol, 96, 18–34.

Cornejo, P., Meier, S., García, S., Ferrol, N., Durán, P., Borie, F., Seguel, A., 2017. Contribution of inoculation with arbuscular mycorrhizal fungi to the bioremediation of a copper contaminated soil using Oenothera picensis. J. Soil Sci. Plant Nutr., 17, 1, on-line version ISSN 0718-9516. DOI:

Cornwell, W.K., Bedford, B.L., Chapin, C.T., 2001. Occurrence of arbuscular mycorrhizal fungi in a phosphorus-poor wetland and mycorrhizal response to phosphorus fertilization. American Journal of Botany, 88, 1824–1829. DOI:

Cronk, J.K., Fennessy, M.S., 2001. Wetland plants: biology and ecology. Lewis Publishers, Boca Raton.

Dolinar, N., Gaberščik, A., 2010. Mycorrhizal colonization and growth of Phragmites australis in an intermittent wetland. Aquatic Botany, 93, 93-98. DOI:

Dolinar, N., Regvar, M., Abram, D., Gaberščik, A., 2016. Water-level fluctuations as a driver of Phragmites australis primary productivity, litter decomposition, and fungal root colonisation in an intermittent wetland. Hydrobiologia, 774, 69-80. DOI:

Fontana, A., Reichelt, M., Hempel, S., Gershenzon J., Unsicker S.B., 2009. The effects of arbuscular mycorrhizal fungi on direct and indirect defense metabolites of Plantago lanceolata L. J Chem Ecol., 35, 833. DOI:

Gaberščik, A., 1993. Measurements of apparent CO2 flux inamphibious plant Polygonum amphibium L. growing over environmental gradient. Photosynthetica, 29, 473–476.

Gaberščik, A., Urbanc-Berčič, O., Kržič, N., Kosi, G., Brancelj, A., 2003. The intermittent lake Cerknica: various faces of the same ecosystem. Lakes and Reservoirs: Research and Management, 8, 159–168. DOI:

Gaberščik, A., Dolinar, N., Šraj, N., Regvar, M., 2017. What have we learnt from studying mycorrhizal colonisation of wetland plant species? In: Varma et al. (eds.): Mycorrhiza - function, diversity, state of the art. 4th ed. Cham: Springer, pp. 291-304. DOI:

Gange, A.C., West, H.M., 1994. Interactions between arbuscular mycorrhizal fungi and foliar-feeding insects in Plantago lanceolata L. New Phytol., 128, 79–87. DOI:

Germ, M., Gaberščik, A., 2003. Comparison of aerial and submerged leaves in two amphibious species, Myosotis scorpioides and Ranunculus trichophyllus. Photosynthetica, 41, 91–96. DOI:

Hartley, S.E, Gange, A.C., 2009. Impacts of plant symbiotic fungi on insect herbivores: Mutualism in a multitrophic context. Annu. Rev. Entomol, 54, 323–342. DOI:

Idoia, G., Nieves, G., Jone, A., 2004. Plant phenology influences the effect of mycorrhizal fungi on the development of Verticillium-induced wilt in pepper. European Journal of Plant Pathology, 110, 227. DOI:

Jacott, C.N., Murray, J.D., Ridout, C.J., 2017. Trade-offs in arbuscular mycorrhizal symbiosis: Disease resistance, growth responses and perspectives for crop breeding. Agronomy, 7, 75. DOI:

Johnson, N.C., Wilson, G.W.T., Wilson, J.A., Miller, R.M., Bowker, M.A., 2015. Mycorrhizal phe- notypes and the law of the minimum. New Phytologist, 205, 1473-84. DOI:

Jumpponen A., 2001. Dark septate endophytes – are they mycorrhizal? Mycorrhiza, 11, 207–211. Jumpponen A., Trappe J.M., 1998. Dark septateendophytes: a reiew of facultative biotrophic root-colonizing fungi. New Phytologist, 140, 295-310. DOI:

Klančnik, K., Pančić, M., Gaberščik, A., 2014. Leaf optical properties in amphibious plant species are affected by multiple leaf traits. Hydrobiologia, 737, 121. DOI:

Kranjc, A., 2003. Geologija in geomorfologija. In: Gaberščik, A. (ed), Jezero, ki izginja: Monografija o Cerkniškem jezeru. Društvo ekologov Slovenije, Ljubljana, 18–37.

Mandyam, K., Jumpponen, A., 2008. Seasonal and temporal dynamics of arbuscular mycorrhizal and dark septate endophytic fungi in a tallgrass prairie ecosystem are minimally affected by nitrogen enrichment. Mycorrhiza, 18, 145-155. DOI:

Martinčič, A., Leskovar, I., 2002. Vegetacija. In: Jezero, ki izginja - Monografija o Cerkniškem jezeru. Gaberščik A. (ed.). Društvo ekologov Slovenije, Ljubljana, 81-94.

Martinčič, A., Wraber, T., Jogan, N., Ravnik, V., Podobnik, A., Turk, B., Vreš, B., Frajman, B., Strgulc- Krajšek, S., Trčak, B., Bačič, T., Fischer, M.A., Eler, K., Surina, B., 2007. Mala flora Slovenije. Tehniška založba Slovenije, Ljubljana, 967 p.

Miller, S.P., 2000. Arbuscular mycorrhizal colonization of semi-aquatic grasses along a wide hydro- logical gradient. New Phytologist, 145, 145-155. DOI:

Miller, S.P., Sharitz, R.R., 2000. Manipulation of flooding and arbuscular mycorrhiza formation in- fluences growth and nutrition of two semiaquatic grass species. Functional Ecology, 14, 738–748. Naveed, D., Jason, B., Nishanta, R., 2012. Mycorrhizal Colonization of Hypericum perforatum L. (Hypericaceae) from Serpentine and Granite Outcrops on the Deer Isles, Maine. Northeastern Naturalist 19, 517-526. DOI:

Regvar, M., Vogel-Mikuš, K., Kugonič, N., Turk, B., Batič F., 2006. Vegetational and mycorrhizal successions at a metal polluted site-indications for the direction of photostabilisation. Environmental Pollution, 144, 976-984. DOI:

Salehi, A., Kouchaksaraei, M.T., Goltapeh, E.M., Shirvany, A., Mirzaei, J., 2016. Effect of mycorrhizal inoculation on black and white poplar in a lead-polluted soil. Journal of Forest Science, 62, (5): 223–228. DOI:

Smith, S. E., Read, D.J., 2008. Mycorrhizal Symbiosis. Academic Press.

Šraj, N., Pongrac, P., Klemenc, M., Kladnik, A., Regvar, M., Gaberščik, A., 2006. Mycorrhizal colo- nisation in plants from intermittent aquatic habitats. Aquatic Botany, 85, 331-336. DOI:

Šraj, N., Pongrac, P., Regvar, M., Gaberščik, A., 2009. Photon-harvesting efficiency and arbuscular mycorrhiza in amphibious plants. Photosynthetica, 47, 61-67. DOI:

Trouvelot, A., Kough, J.L., Gianinazzi-Pearson, V., 1986. Estimation of VA mycorrhizal infection levels. Research for methods having a functional significance. In: Gianinazzi, S., (ed.): Physiolo- gical and Genetical Aspects of Mycorrhizae, Service des Publications INRA, Paris. pp. 217–221. Urbanc-Berčič, O., Gaberščik, A., 2001. The influence of water table fluctuations on nutrient dyna- mics in the rhizosphere of common reed (Phragmites australis). Water Science and Technology, 44, 245-250. DOI:

Urbanc-Berčič, O., Kržič, N., Rudolf, M., Gaberščik, A., Germ, M., 2005. The effect of water level fluctuation on macrophyte occurrence and abundance in the intermittent Lake Cerknica. In: Vyma- zal, J. (ed.): Natural and Constructed Wetlands: Nutrients, Metals and Management. Backhuys Publishers, Leiden, pp. 312–320.

Zhang, H., Ziegler, W., Han, X., Trumbore, S., Hartmann. H., 2015. Plant carbon limitation does not reduce nitrogen transfer from arbuscular mycorrhizal fungi to Plantago lanceolata. Plant Soil, 396, 369–380. DOI:






Original Research Paper

How to Cite

M. Vengust, D., & Gaberščik, A. (2018). Seasonal dynamics of fungal colonisation of Plantago altissima roots in a water-fluctuating wetland. Acta Biologica Slovenica, 61(1), 13-24.

Similar Articles

1-10 of 44

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 > >>