Vital fluorescent staining for non–destructive studies of neuromast topography in urodele amphibians


  • Patrik Prša
  • Lilijana Bizjak Mali



fluorescent staining, DiASP, neuromasts topography, salamanders


Neuromasts are mechanosensory organs found in primarily aquatic vertebrates, including many species of amphibians, and are arranged as specific patterns to form the lateral-line system on the head and along the body. We used a hair-cell-specific fluorescent dye, DiASP, to analyze the distributional pattern of neuromasts in the lateral line system of live captive-born larvae of the Italian crested newt, Triturus carnifex (Laurenti, 1768). We confirmed that DiASP presents a safe and accurate alternative method for non-destructive studies of neuromast ontogeny and distribution in live amphibians. All newt larvae subjected to analyses survived and no teratogenic effects of DiASP on their further development were observed. We were able to use these data to completely characterize the distribution of neuromasts in this species and to infer the functional significance of this distribution. Cross-species comparison of general topography points to neuromast arrangement as a conserved trait in urodelans.


Bulog, B., 1988. Surface ultrastructure of lateral line sensory receptors in Proteus anguinus Laur (Urodela, Amphibia). Inst. Phys. Conf. Ser., 93 (3), 151-152. EUREM 88, York, England.

Collazzo, A., Fraser, S.E., Mabee, P.M., 1994. A dual embryonic origin for vertebrate mechanorecep- tors. Science, 264 (5157), 426-431. DOI:

Coombs, S., Janssen J.J., Webb, J.C., 1988. Diversity of lateral line system: evolutionary and functio- nal consideration. In: Atema, J., et al. (eds): Sensory biology of aquatic animals. Springer Verlag, New York, pp. 553-554. DOI:

Coombs, S., Bleckmann, H., 2014. The germs of the past: a brief history of lateral line research in the context of the hearing sciences. In: Coombs, S., et al. (eds): The lateral line system. Springer Science & Business Media, New York, pp. 1-16. DOI:

Dawson, A.B., 1936. Changes in the lateral‐line organs during the life of the newt, Triturus viride- scens. A consideration of the endocrine factors involved in the maintenance of differentiation. JEZ Ecological Genetics and Physiology, 74 (2), 221-237. DOI:

Dijkgraaf, S., 1962. The functioning and significance of the lateral-line organs. Biol. Reel., 38, 51-105. DOI:

Duellman, W.E., Trueb, L., 1986. Lateral – line system. In: Duellman, W.E., Trueb, L. (eds): Biology of amphibians. McGraw-Hill, Inc., New York, pp. 378-379. DOI:

Flock, Å., Wersäll, J., 1962. A study of the orientation of the sensory hairs of the receptor cells in the lateral line organ of fish, with special reference to the function of the receptors. J. Cell Biol., 15, 19-27. DOI:

Flock, Å., Duvall, A.J., 1965. The ultrastructure of the kinocilium of the sensory cells in the inner ear and lateral line organs. J. Cell. Biol., 25, 1-8. DOI:

Flock, Å., Jørgensen, J.M., 1974. The ultrastructure of lateral line sense organs in the juvenile Sala- mander Ambystoma mexicanum. Cell Tiss. Res., 152, 283-292. DOI:

Fritzsch, B., 1981. The pattern of lateral-line afferents in urodeles: A horseradish-peroxidase study. Cell Tiss. Res., 218 (3), 581-594. DOI:

Fritzsch B., Wahnschaffe U., 1983. The electroreceptive ampullary organs of urodeles. Cell Tiss. Res., 229, 483–503. DOI:

Hong, C., Guo-Hua, Y., Heatwole, H., 2000. Ultrastructure of the skin mechanoreceptors of the chinese giant salamander, Andrias davidianu. J. Morph., 245, 80–85. DOI:<80::AID-JMOR6>3.0.CO;2-U

Jørgensen, J.M., Flock, Å., 1973. The ultrastructure of lateral line sense organs in the adult salamander Ambystoma mexicanum. J. Neurocytol., 2, 133-142. DOI:

Lannoo, M.J., 1985. Neuromast topography in Ambystoma larvae. Copeia, 3, 535-539. Lannoo, M.J., 1987. Neuromast topography in urodele amphibians. J. Morphol., 191, 247-263. DOI:

Lannoo, M.J., 1988. The evolution of the amphibian lateral line system and its bearing on amphibian phylogeny. J. Zool. Syst. Evol. Res., 26 (2), 128-134. DOI:

Mali, L., 1990. Ultrastructural analysis and functional-morphological orientation of lateral-line neu- romasts in alpine newt (Triturus alpestris) and proteus (Proteus anguinus Laur.). University of Ljubljana. Graduate thesis.

Northcutt, R.G., Catania, K.C., Criley, B.B., 1994. Development of lateral line organs in the axolotl. J. Comparative Neurology, 340, 480-514. DOI:

Russell, I.J., 1976. Amphibian lateral line receptors. In: Llinas, R., Precht, W. (eds): Frog neurobiology. Springer, Berlin, Heidelberg, pp. 513-550. DOI:

Sato, A., 1976. Electron microscopic study of the developing lateral-line organ in the embryo of the newt, Triturus pyrrhogaster. Anat. Rec., 186, 565-584. DOI:

Schuster, K., Ghysen, A., 2011. Imaging the development of the fish lateral-line system. In: Sharpe, J., Wong R.O. (eds): Imaging in developmental biology: a laboratory manual. Cold Spring Harbor, New York, pp. 282–283.

Shelton, P.M.J., 1970. The lateral line system at metamorphosis in Xenopus laevis (Daudin). J. Em- bryol. Exp. Morph., 24 (3), 511-524. DOI:

Smith, S.C., Lannoo, M.J., Armstrong, J.B., 1988. Lateral-line neuromast development in Ambystoma mexicanum and a comparison with Rana pipiens. J. Morph., 198, 367-379. DOI:

Webb, J.F., 2014. Morphological diversity, development, and evolution of the mechanosensory lateral line system. In: Coombs, S., et al. (eds): The lateral line system. Springer Science & Business Media, New York, pp. 17-72. DOI:






Original Research Paper

How to Cite

Prša, P., & Bizjak Mali, L. (2018). Vital fluorescent staining for non–destructive studies of neuromast topography in urodele amphibians. Acta Biologica Slovenica, 61(1), 35-46.

Similar Articles

You may also start an advanced similarity search for this article.