Within-weed bed architectural adaptation of branching pattern in Myriophyllum spicatum L.
DOI:
https://doi.org/10.14720/abs.61.1.15881Keywords:
Myriophyllum spicatum, architecture of plants, water flow velocityAbstract
Regarding architectural adaptations in aquatic plants caused by the velocity of water flow only scarce, older information is available. When studying different Myriophyllum spicatum L. specimen architecture in the same water body differences in individual main axes and branching pattern were detected at the upstream and at the downstream end of individual plant beds. Samples from the two locations showed significant differences in architectural composition. At the downstream parts of the water body individual plants were longer and the number of branches was higher, which is contributed to flow velocity.Metrics
References
Barthélémy, D., Caraglio, Y., 2007. Plant architecture: A dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Annals of Botany, 99, 375-407. DOI: https://doi.org/10.1093/aob/mcl260
Caldwell, M.M., 1968. Solar ultraviolet radiation as an ecological factor for alpine plants. Ecological Monographs, 38, 243-268. DOI: https://doi.org/10.2307/1942430
Caldwell, M.M., Robberecht, R., Nowak, R.S., Billings, W.D., 1982. Differential photosynthetic inhibition by unltravilet radiation in species form the arctic-alpine life zone. Arctic and Alpine Research, 14, 195-202. DOI: https://doi.org/10.2307/1551152
Machata-Wenninger, C., Janauer, G.A., 1991. The measurement of current velocities in macrophyte beds. Aquatic Botany, 39, 221–230. DOI: https://doi.org/10.1016/0304-3770(91)90034-3
Madsen, J.D., Chambers, P.A., James, W.F., Koch, E.W., Westlake, D.F., 2001. The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia, 444, 71-84. DOI: https://doi.org/10.1023/A:1017520800568
Marshall, W.P.J., Westlake, D.F., 1990. Water velocities around water plants in chalk streams. Folia Geobotanica et Phytotaxonomica, 25, 279-289. DOI: https://doi.org/10.1007/BF02913028
Mazej, Z., Germ, M., 2013. Spatial pattern of native species Myriophyllum spicatum and invasive alien species Elodea nuttallii after introduction of the latter one into the Drava River (Slovenia). Biologia, 68, 202-209. DOI: https://doi.org/10.2478/s11756-013-0006-8
Neuhold, B., Janauer, J.D., Janauer, G.A., 2016. Architectural adaptation in Myriophyllum spicatum L. in a lotic environment: is it caused by current velocity? Acta Biologica Slovenica, 59, 73-87. Nultsch, W., 2001. Allgemeine Botanik. Georg Thieme, Stuttgart. 663 pp.
Sand-Jensen, K., Mebus, J.R., 1996. Fine-scale patterns of water velocity within macrophyte patches in streams. OIKOS, 76, 169-180. DOI: https://doi.org/10.2307/3545759
Sand-Jensen, K., Pedersen, O., 1999. Velocity gradients and turbulence around macrophyte stands in streams. Freshwater Biology, 42, 315-328. DOI: https://doi.org/10.1046/j.1365-2427.1999.444495.x
Wilson, C.A.M.E., 2007. Flow resistance models for flexible surberged vegetation. Journal of Hydro- logy, 342, 213-222. DOI: https://doi.org/10.1016/j.jhydrol.2007.04.022
Wolters, J.-W., Verdonschot, R.C.M., Schoelynck, J., Verdonschot, P.F.M., Meire, P., 2018. The role of macrophyte structural complexity and water flow velocity in determining the epiphytic macroinvertebrate community composition in a lowland stream. Hydrobiologia, 806, 157-173. DOI: https://doi.org/10.1007/s10750-017-3353-6
Web sources
Natur erleben: http://www.naturerleben.net/category/im-gebirge/fruhling-im-gebirge/zwergwuchs- eine-erfolgsstrategie/; accessed 20180505 – 18:59.
Wind effect: http://agriculture-aajtak.blogspot.co.at/2013/09/13-important-effects-of-wind-on-crop. html; accessed 20180505 – 19:26.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.