Stress tolerance of three opportunistic black yeasts

Authors

  • Janja Zajc
  • Cene Gostinčar
  • Metka Lenassi
  • Nina Gunde-Cimerman

DOI:

https://doi.org/10.14720/abs.61.2.15890

Keywords:

melanised fungi, temperature, NaCl, pH tolerance, ROS, oligotrophism, proteolytic activity, capsule

Abstract

Many species of black yeasts can survive extremely harsh conditions and can quickly adapt to novel environments. These traits were proposed to have a role in the ability of some fungal species tocolonise indoor habitats inhospitable for majority of microorganisms, and to cause (opportunistic)infections in humans. In order to better understand the stress tolerance of black yeasts and thereby their opportunism, we focused our research on the three model black yeasts: the polyextremotolerant Au-reobasidium melanogenum and Exophiala dermatitidis, and the extremely halotolerant Hortaeawerneckii. These black yeasts are shown to thrive at temperatures, salinities, pH values and, H2O2 concentrations that inhibit growth of mesophilic species. Most importantly, unlike their close relatives they can not only grow, but also synthesize siderophores (E. dermatitidis) or degradeproteins (A. melanogenum) at 37 °C - traits that are crucial for pathogenesis in humans. These results support the hypothesis that the ability to cope with various environmental stresses is linked to the opportunistic behaviour of fungi. Therefore, better understanding of the connections between the stress-tolerant biology of black fungi and their ability to cause disease is needed, in particular due to their changing interactions with humans and their emerging pathogenicity.

References

Blasi, B., Tafer, H., Tesei, D., Sterflinger, K., 2015. From glacier to sauna: RNA-Seq of the human pathogen black fungus Exophiala dermatitidis under varying temperature conditions exhibits common and novel fungal response. Plos One 10(6). DOI: https://doi.org/10.1371/journal.pone.0127103

Bonifaz, A., Gomez-Daza, F., Paredes, V., Ponce, R.M., 2010. Tinea versicolor, tinea nigra, white piedra, and black piedra. Clinics in Dermatology 28(2), 140–145. DOI: https://doi.org/10.1016/j.clindermatol.2009.12.004

Brizzio, S., Turchetti, B., de García, V., Libkind, D., Buzzini, P., van Broock, M., 2007. Extracellular enzymatic activities of basidiomycetous yeasts isolated from glacial and subglacial waters of northwest Patagonia (Argentina). Canadian Journal of Microbiology 53(4), 519–525. DOI: https://doi.org/10.1139/W07-010

Castiglia, V.C., Kuhar, F., 2015. Deterioration of expanded polystyrene caused by Aureobasidium pullulans var. melanogenum. Revista Argentina De Microbiologia 47(3), 256–260. DOI: https://doi.org/10.1016/j.ram.2015.05.001

Chen, J., Xing, X.K., Zhang, L.C., Xing, Y.M., Guo, S.X., 2012. Identification of Hortaea werneckii isolated from mangrove plant Aegiceras comiculatum cased on morphology and rDNA sequences. Mycopathologia 174(5-6), 457–466. DOI: https://doi.org/10.1007/s11046-012-9568-1

de Garcia, V., Zalar, P., Brizzio, S., Gunde-Cimerman, N., van Broock, M., 2012. Cryptococcus species (Tremellales) from glacial biomes in the southern (Patagonia) and northern (Svalbard) hemispheres. Fems Microbiology Ecology 82(2), 523–539. DOI: https://doi.org/10.1111/j.1574-6941.2012.01465.x

de Hoog, G.S., Gerrits van den Ende, A.H., 1992. Nutritional pattern and eco-physiology of Hortaea werneckii, agent of human tinea nigra. Antonie Van Leeuwenhoek 62(4), 321–329. DOI: https://doi.org/10.1007/BF00572601

de Hoog, G.S., Guarro, J., Gené, J., Figueras, M.J., 2015. Atlas of Clinical Fungi. The ultimate benchtool for diagnostics, Blackwell Publishing Ltd.

Gostinčar, C., Grube, M., Gunde-Cimerman, N., 2011. Evolution of fungal pathogens in domestic environments? Fungal Biology 115(10), 1008–1018. DOI: https://doi.org/10.1016/j.funbio.2011.03.004

Gostinčar, C., Gunde-Cimerman, N., Grube, M., 2015. Polyextremotolerance as the fungal answer to changing environments. Microbial evolution under extreme conditions. C. Bakermans. Berlin, de Gruyter, 185–208. DOI: https://doi.org/10.1515/9783110340716-012

Gostinčar, C., Muggia, L., Grube, M., 2012. Polyextremotolerant black fungi: oligotrophism, adaptive potential, and a link to lichen symbioses. Frontiers in Microbiology 3, 390. DOI: https://doi.org/10.3389/fmicb.2012.00390

Gostinčar, C., Ohm, R.A., Kogej, T., Sonjak, S., Turk, M., Zajc, J., Zalar, P., Grube, M., Sun, H., Han, J., Sharma, A., Chiniquy, J., Ngan, C.Y., Lipzen, A., Barry, K., Grigoriev, I.V., Gunde-Cimerman, N., 2014. Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species. BMC Genomics 15(1), 549. DOI: https://doi.org/10.1186/1471-2164-15-549

Göttlich, E., de Hoog, G.S., Yoshida, S., Takeo, K., Nishimura, K., Miyaji, M., 1995. Cell-surface hydrophobicity and lipolysis as essential factors in human tinea nigra. Mycoses 38, 489–494. DOI: https://doi.org/10.1111/j.1439-0507.1995.tb00026.x

Gunde-Cimerman, N., Zalar, P., de Hoog, S., Plemenitaš, A., 2000. Hypersaline waters in salterns - natural ecological niches for halophilic black yeasts. FEMS Microbiology, Ecology 32(3), 235–240. DOI: https://doi.org/10.1111/j.1574-6941.2000.tb00716.x

Hamad, M., 2008. Antifungal immunotherapy and immunomodulation: A double-hitter approach to deal with invasive fungal infections. Scandinavian Journal of Immunology 67(6), 533–543. DOI: https://doi.org/10.1111/j.1365-3083.2008.02101.x

Hamada, N., Abe, N., 2010. Comparison of fungi found in bathrooms and sinks. Biocontrol Science 15(2), 51–56. DOI: https://doi.org/10.4265/bio.15.51

Hankin, L., Anagnostakis, S.L., 1975. The use of solid media for the detection of enzyme production by fungi. Mycologia(67), 597–607. DOI: https://doi.org/10.1080/00275514.1975.12019782

Johnson, L., 2008. Iron and siderophores in fungal-host interactions. Mycological Research 112, 170–183. DOI: https://doi.org/10.1016/j.mycres.2007.11.012

Kejžar, A., Gobec, S., Plemenitaš, A., Lenassi, M., 2013. Melanin is crucial for growth of the black yeast Hortaea werneckii in its natural hypersaline environment. Fungal Biol 117(5), 368–379. DOI: https://doi.org/10.1016/j.funbio.2013.03.006

Kogej, T., Ramos, J., Plemenitaš, A., Gunde-Cimerman, N., 2005. The halophilic fungus Hortaea werneckii and the halotolerant fungus Aureobasidium pullulans maintain low intracellular cation concentrations in hypersaline environments. Appl Environ Microbiol 71(11), 6600–6605. DOI: https://doi.org/10.1128/AEM.71.11.6600-6605.2005

Kondori, N., Lindblad, A., Welinder-Olsson, C., Wenneras, C., Gilljam, M., 2014. Development of IgG antibodies to Exophiala dermatitidis is associated with inflammatory responses in patients with cystic fibrosis. Journal of Cystic Fibrosis 13(4), 391–399. DOI: https://doi.org/10.1016/j.jcf.2013.12.007

Lian, X., de Hoog, G.S., 2010. Indoor wet cells harbour melanized agents of cutaneous infection. Medical Mycology 48(4), 622–628. DOI: https://doi.org/10.3109/13693780903405774

Matos, T., Haase, G., Gerrits van den Ende, A.H., de Hoog, G.S., 2003. Molecular diversity of oligotro- phic and neurotropic members of the black yeast genus Exophiala, with accent on E. dermatitidis. Antonie Van Leeuwenhoek 83(4), 293–303.

Monod, M., Capoccia, S., Lechenne, B., Zaugg, C., Holdom, M., Jousson, O., 2002. Secreted proteases from pathogenic fungi. International Journal of Medical Microbiology 292(5-6), 405–419. DOI: https://doi.org/10.1078/1438-4221-00223

Neilands, J.B., 1993. Siderophores. Archives of Biochemistry and Biophysics 302(1), 1–3. DOI: https://doi.org/10.1006/abbi.1993.1172

Neilands, J.B., Konopka, K., Schwyn, B., Coy, M., Francis, R.T., Paw, B.H., Bagg, A., 1987. Compa- rative biochemistry of microbial iron assimilation. Iron Transport in Microbes, Plants and Animals. G. Winkelmann, D. Van der Helm and J. B. Neilands. New York, VCH Publishers.

Ng, K.P., Soo-Hoo, T.S., Na, S.L., Tay, S.T., Hamimah, H., Lim, P.C., Chong, P.P., Seow, H.F., Chavez, A.J., Messer, S.A., 2005. The mycological and molecular study of Hortaea werneckii isolated from blood and splenic abscess. Mycopathologia 159(4), 495–500. DOI: https://doi.org/10.1007/s11046-005-1154-3

Novak Babič, M., Zalar, P., Ženko, B., Džeroski, S., Gunde-Cimerman, N., 2016. Yeasts and yeast- like fungi in tap water and groundwater, and their transmission to household appliances. Fungal Ecology 20, 30–39. DOI: https://doi.org/10.1016/j.funeco.2015.10.001

Prenafeta-Boldu, F.X., Summerbell, R., de Hoog, G.S., 2006. Fungi growing on aromatic hydrocarbons: biotechnology’s unexpected encounter with biohazard? FEMS Microbiol Rev 30(1), 109–130. DOI: https://doi.org/10.1111/j.1574-6976.2005.00007.x

Scott, J.A., Untereiner, W.A., 2004. Determination of keratin degradation by fungi using keratin azure. DOI: https://doi.org/10.1080/13693780310001644680

Medical Mycology 42(3), 239–246.

Serrano, R., Martin, H., Casamayor, A., Arino, J., 2006. Signaling alkaline pH stress in the yeast Sac- charomyces cerevisiae through the Wsc1 cell surface sensor and the Slt2 MAPK pathway. Journal of Biological Chemistry 281(52), 39785-39795. DOI: https://doi.org/10.1074/jbc.M604497200

Seyedmousavi, S., Netea, M.G., Mouton, J.W., Melchers, W.J.G., Verweij, P.E., de Hoog, G.S., 2014. Black yeasts and their filamentous relatives: Principles of pathogenesis and host defense. Clinical Microbiology Reviews 27(3), 527-542. DOI: https://doi.org/10.1128/CMR.00093-13

Song, Y.G., Laureijssen-van de Sande, W.W.J., Moreno, L.F., van den Ende, B.G., Li, R.Y., de Hoog, S., 2017. Comparative ecology of capsular Exophiala species causing disseminated infection in humans. Frontiers in Microbiology 8. DOI: https://doi.org/10.3389/fmicb.2017.02514

Sood, S., Vaid, V.K., Sharma, M., Bhartiya, H., 2014. Cerebral phaeohyphomycosis by Exophiala dermatitidis. Indian Journal of Medical Microbiology 32(2), 188–190. DOI: https://doi.org/10.4103/0255-0857.129830

Sudhadham, M., Prakitsin, S., Sivichai, S., Chaiyarat, R., Dorrestein, G.M., Menken, S.B.J., de Hoog, G.S., 2008. The neurotropic black yeast Exophiala dermatitidis has a possible origin in the tropical rain forest. Studies in Mycology(61), 145–155. DOI: https://doi.org/10.3114/sim.2008.61.15

Yike, I., 2011. Fungal proteases and their pathophysiological effects. Mycopathologia 171(5), 299–323. DOI: https://doi.org/10.1007/s11046-010-9386-2

Yurlova, N.A., de Hoog, G.S., 2002. Exopolysaccharides and capsules in human pathogenic Exophiala species. Mycoses 45(11-12), 443–448. DOI: https://doi.org/10.1046/j.1439-0507.2002.00807.x

Zalar, P., Novak, M., De Hoog, G.S., Gunde-Cimerman, N., 2011. Dishwashers - A man-made ecological niche accommodating human opportunistic fungal pathogens. Fungal Biology 115(10), 997–1007. DOI: https://doi.org/10.1016/j.funbio.2011.04.007

Downloads

Published

01.12.2018

Issue

Section

Original Research Paper

How to Cite

Zajc, J., Gostinčar, C., Lenassi, M., & Gunde-Cimerman, N. (2018). Stress tolerance of three opportunistic black yeasts. Acta Biologica Slovenica, 61(2), 15-27. https://doi.org/10.14720/abs.61.2.15890

Similar Articles

1-10 of 128

You may also start an advanced similarity search for this article.