Combined use of chlorophyll a and phycocyanin fluorescence sensors for quantification and differentiation of phytoplankton: a useful approach for small surface water bodies

Authors

  • Tinkara Rozina
  • Tina Eleršek
  • Maja Zupančič Justin
  • Andrej Meglič

DOI:

https://doi.org/10.14720/abs.61.2.15891

Keywords:

small water bodies, algae, cyanobacteria, fluorescence sensors, biovolume

Abstract

Sensors based on in vivo measurements of photosynthetic pigments fluorescence enable real-time phytoplankton monitoring with high spatial and temporal resolution. A combination of chlorophyll a (CHL) and phycocyanin (PC) fluorescence sensors was used for phytoplankton quantification and differentiation in two small water bodies, Koseze Pond and pond in Hotinja vas. The high correlation of CHL and PC fluorescence signals with biovolume was confirmed during the two-year monitoring in anatural pond environment in spite of a seasonal succession of the phytoplankton. Additionally, disturbances of the sensors were investigated. Water bodies containing predominantly algae yielded false positive signals of the PC sensor, which reached up to 1% of the intensity of the CHL signal. Similarly, underestimated counts of cyanobacteria measured with CHL fluorescence sensor can be adjusted using PC fluorescence sensor.

References

Bastien, C., Cardin, R., Veilleux, E., Deblois, C., Warren, A., Laurion, I., 2011. Performance evaluation of phycocyanin probes for the monitoring of cyanobacteria. Journal of Environmental Monitoring 13, 110-118. DOI: https://doi.org/10.1039/C0EM00366B

Biggs, J., Fox, G., Nicolet, P., Whitfield, M., Williams, P., 1999. The value of the pond. The Freshwater Biological Association Newsletter 8, 1–3.

Bowling, L., Ryan, D., Holliday, J., Honeyman, G., 2012. Evalution of in situ fluoromety to determi- ne cyanobacterial abundance in the Murray and lower Darling rivers, Australia. River Research Applications 29 (8), 1059-1071. DOI: https://doi.org/10.1002/rra.2601

Brient, L., Lengronne, M., Bertrand, E., Rolland, D., Sipel A., Steinmann, D., Baudin, I., Legeas, M., Le Rouzic, B., Bormans, M., 2008. A phycocyanin probe as tool for monitoring cyanobacteria in freshwater bodies. Journal of Environmental Monitoring 10, 248-255. DOI: https://doi.org/10.1039/B714238B

Bryant, D.A., 1986. The cyanobacterial photosynthetic apparatus, comparison to those of higher plants and photosynthetic bacteria. In, Platt, T., Li, W.K.W. (Eds.), Photosynthetic Picoplankton. Canadian Bulletin of Fisheries and Aquatic Sciences 214, 423-500.

Campbell, D., Hurry, V., Clarke, A.K., Gustafsson, P., Öquist, G., 1998. Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiology and Molecular Biology Reviews 62, 667-683. DOI: https://doi.org/10.1128/MMBR.62.3.667-683.1998

CEN EN 15204, 2006. Water quality - Guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermöhl technique). 42 pp.

Chang, D.W., Hobson, P., Burch, M., Lin, T.F., 2012. Measurement of cyanobacteria using in-vivo fluo- roscopy – Effect of cyanobacterial species, pigments, and colonies. Water Research 46, 5037-5048. DOI: https://doi.org/10.1016/j.watres.2012.06.050

Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy as amended by Decision 2455/2001/EC and Directives 2008/32/EC, 2008/105/EC and 2009/31/EC.

Directive 2006/7/EC of the European Parliament and of the Council of 15 February 2006 concerning the management of bathing water quality and repealing Directive 76/160/EEC.

Green, B.R., Durnford, D.G., 1996. The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 47, 685-714. DOI: https://doi.org/10.1146/annurev.arplant.47.1.685

Gregor, J., Maršalek, B., Šipkova, H., 2007. Detection and estimation of potentially toxic cyano- bacteria in raw water at the drinking water treatment plant by in vivo fluorescence method. Water Research 41, 228–234. DOI: https://doi.org/10.1016/j.watres.2006.08.011

Hillebrand, H., Dürselen, C.D., Kirschtel, D., Pollingher, U., Zohary, T., 1999. Biovo-lume calculation for pelagic and benthic microalgae. Journal of Phycology 35 (2), 403–424. DOI: https://doi.org/10.1046/j.1529-8817.1999.3520403.x

Hindak J. F. 1976. Freshwater algae. Bratislava, Slovak Academic Publishing House, 157 pages. Izydorczyk, K., Carpentier, C., Mrówczyński, J., Wagenvoort, A., Jurcak, T., Tarczyńska, M. 2009. Establishment of an Alert Level Framework for cyanobacteria in drinking water resources by using the Algae Online Analyser for monitoring cyanobacterial chlorophyll a. Water Research 43, 989-996. DOI: https://doi.org/10.1016/j.watres.2008.11.048

John, D.M., Whitton, B.A., Brook, A.J. (Ed.), 2002. The Freshwater Algal Flora of the British Isles. An Identification Guide to Freshwater and Terrestrial Algae. Cambridge University Press, 702 pp.

Kasinak, J. M. E., Holt, B. M., Chislock M. F., Wilson A. E., 2015. Benchtop fluorometry of phycocya- nin as a rapid approach for estimating cyanobacterial biovolume. Journal of Plankton Research 37(1), 248-257. DOI: https://doi.org/10.1093/plankt/fbu096

Komárek, J, Anagnostidis K., 2000. Freshwater flora of Central Europe 19/1. Elsevier Spektrum Akademischer Verlag, Berlin.

Komàrek, J., Anagnostidis, K., 2005. Cyanoprokaryota. 2. Teil, Oscillatoriales. Süsswasser- flora von Mitteleuropa 19/2. Elsevier, München,759 pp.

Kong, Y., Lou, I., Zhang, Y., Lou, C.U., Mok, K.M., 2013. Using an online phycocyanin fluorescence probe for rapid monitoring of cyanobacteria in Macau freshwater reservoir. Hydrobiologia 741, 33-49. DOI: https://doi.org/10.1007/s10750-013-1759-3

Loisa, O., Käärlä, J., Laaksonlaita, J., Niemi, J., Sarvala, J., Saario, J., 2015. From phycocyanin fluorescence to absolute cyanobacteria biomass, An application using in-situ fluorometer probes in the monitoring of potentially harmful cyanobacteria blooms. Water Practice &Technology 10 (4), 695-698. DOI: https://doi.org/10.2166/wpt.2015.083

Lühring, M., Faassen, E.J., 2013. Dog Poisoning Associated with a Microcystis aeruginosa Bloom in the Netherlands. Toxins 5(3), 556-567. DOI: https://doi.org/10.3390/toxins5030556

McQuaid, N., Zamyadi, A., Prevost M., Bird, D.F., Dorner, S., 2011. Use of in vivo phycocyanin fluorescence to monitor potential microcystin-producing cyanobacterial biovolume in a drinking water source. Journal of Environmental Monitoring 13, 455-463. DOI: https://doi.org/10.1039/C0EM00163E

Oertli, B., Joyer, D. A., Catella, E., Juge, R., Cambin, D., Lachavanne, J. B., 2002. Does size matter the relationship between pond area and biodiversity. Biol. Cons. 104, 59–70. DOI: https://doi.org/10.1016/S0006-3207(01)00154-9

Raps, S., Wyman, K., Siegelman, H. W., Falkowski, P. G., 1983. Asaptation of the cyanobacterium Microcystis aeruginosa to light intensity. Plant Physiology. 2(3),829-832. DOI: https://doi.org/10.1104/pp.72.3.829

Rozina, T., Sedmak, B., Zupančič Justin, M., Meglič, A., 2017. Evaluation of cyanobacteria biomass derived from upgrade of phycocyanin fluorescence estimation. Acta Biologica Slovenica 60(2), 21,28.

Sedmak, B., Kosi, G., Kolar B., 1994. Cyanobacteria and their relevance. Periodicum Biology 96, 428-430.

Song, K., Li, L., Tedesco, L., Clercin, N., Hall, B., Li, S., Shi, K., Liu, D., Sun, Y., 2013. Remote estimation of phycocyanin (PC) for inland waters coupled with YSI PC fluorescence probe. En- vironmental Science Pollution Research 20, 5330–5340. DOI: https://doi.org/10.1007/s11356-013-1527-y

Seppälä, J., Ylöstalo, P., Kaitala, S., Hällfors, S., Raateoja, M., Maunula, P., 2007. Ship-of-opputunity based phycocyanin fluorescence monitoring of the filamentous cyanobacteria bloom dynamics in the Baltic See. Estuarine, Costal and Shelf Science 73, 489-500. DOI: https://doi.org/10.1016/j.ecss.2007.02.015

Walsby, A.E., Ng, G., Dunn, C., Davis, P.A., 2004. Comparison of the depth where Planktothrix rubescens stratifies and the depth where the daily insolation supports its neutral buoyancy. New Phytologist 162, 133–145. DOI: https://doi.org/10.1111/j.1469-8137.2004.01020.x

Wetzel, R. G., 2001. Limnology. 3rd ed. Philadelphia, Saunders College Publishing. 342 pages. Williams, P., Whitfield, M., Biggs, J., Bray, B., Fox, G., Nicolet, P., Sear, D., 2003. Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biological Conservation 115, 329–341. DOI: https://doi.org/10.1016/S0006-3207(03)00153-8

Zamyadi, A., McQuaid, N., Prevost, M., Dorner, S., 2012. Monitoring of potentially toxic cyanobacte- ria using an online multi-probe in drinking water sources. Journal of Environmental Monitoring 14(2), 579-558. DOI: https://doi.org/10.1039/C1EM10819K

Zamyadi, A., Dorner, S., Ndong, M., Ellis, D., Bolduc, A., Bastien, C., Prévost, M., 2014. Application od in vivo measurments fort he management of cynobacteria breakthrough into drinking water treatment plants. Environmental Science; Processes & Impacts 16, 213-323. DOI: https://doi.org/10.1039/c3em00603d

Downloads

Published

01.12.2018

Issue

Section

Original Research Paper

How to Cite

Rozina, T., Eleršek, T., Zupančič Justin, M., & Meglič, A. (2018). Combined use of chlorophyll a and phycocyanin fluorescence sensors for quantification and differentiation of phytoplankton: a useful approach for small surface water bodies. Acta Biologica Slovenica, 61(2), 29-37. https://doi.org/10.14720/abs.61.2.15891