Elemental composition and fungal colonisation of decomposing Phragmites australis (Cav.) Trin. ex Steud. litter at different water regimes

Authors

  • Matevž Likar
  • Nataša Dolinar
  • Katarina Vogel-Mikuš
  • Alenka Gaberščik
  • Marjana Regvar

DOI:

https://doi.org/10.14720/abs.61.2.15896

Keywords:

litter decomposition, fungal community, elemental composition, intermittent habitat, wetland

Abstract

Plant litter decomposition in intermittent dry and wet habitats share decomposition mechanisms of both dry land and submerged habitats. The aims of the present study were therefore to compare fungi communities on the decomposing plant material regarding the water regime of the location. Furthermore we wanted to evaluate the effects of the water regime on the decomposition in combination with fungal decomposers. Litter decomposition was followed on selected sites of Lake Cerknica with different hydrological regimes, using the litterbag method. The elemental composition of the decomposing plant tissues of Phragmites australis and fungal communities developing on the decomposing plant material were analysed. The hydrological regime has an important role in defining the fungal community of P. australis leaf litter. Water regime affected the fungal communities, which exhibited higher diversity under more stable dry or submerged conditions (in contrast to intermittent). Decomposition rates were more affected by the environment as by the fungal community diversity or composition. But, despite differences in the fungal communities the elemental composition showed similar patterns of enrichment due to decreases in the organic fraction of the plant tissue.

References

Anderson, M.J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecol, 26, 31-46. DOI: https://doi.org/10.1046/j.1442-9993.2001.01070.x

Bärlocher, F., 1997. Pitfalls of traditional techniques when studying decomposition of vascular plant remains in aquatic habitats. Limnetica, 13 (2), 1-11. DOI: https://doi.org/10.23818/limn.13.10

Batty, L.C., Younger, P.L., 2007. The effect of pH on plant litter decomposition and metal cycling in wetland mesocosms supplied with mine drainage. Chemosphere, 66, 158-164. DOI: https://doi.org/10.1016/j.chemosphere.2006.05.039

Bedford, A.P., 2005. Decomposition of Phragmites australis litter in seasonally flooded and exposed areas of a managed reedbed. Wetlands, 25, 713-720. DOI: https://doi.org/10.1672/0277-5212(2005)025[0713:DOPALI]2.0.CO;2

Berg, B., McClaugherty, C., 2003. Plant litter, decomposition, humus formation, carbon sequestration. Springer Verlag, Berlin, 286 pp.

Bonanno, G., 2011. Trace element accumulation and distribution in the organs of Phragmites australis DOI: https://doi.org/10.1016/j.ecoenv.2011.01.018

(common reed) and biomonitoring applications. Ecotox Environ Safe, 74, 1057-1064.

Bridgham, S.D., Lamberti, G.A., 2009. Ecological dynamics III: Decomposition in wetlands. In: Malt- by, E., Barker, T. (eds,) The wetlands handbook, Blackwell Publishing Ltd, Chichester, 326-345. DOI: https://doi.org/10.1002/9781444315813.ch15

Brinson, M.M., Lugo, A.E., Brown, S., 1981. Primary productivity, decomposition and consumer activity in freshwater wetlands. Ann Rev Ecol Syst, 12, 123-161. DOI: https://doi.org/10.1146/annurev.es.12.110181.001011

Capps, K.A., Graça, M.A.S., Encalada, A.C., Flecker, A.S., 2011. Leaf-litter decomposition across three flooding regimes in a seasonally flooded Amazonian watershed. J Trop Ecol, 27, 205-210. Chao, A., 1984. Nonparametric estimation of the number of classes in a population. Scandinavian J Statistics, 11, 265-270. DOI: https://doi.org/10.1017/S0266467410000635

Chao, A., 1987. Estimating the population size for capture-recapture data with unequal catchability. Biometrics, 43, 783-791. DOI: https://doi.org/10.2307/2531532

Chao, A., Gotelli, N.J., Hsieh, T.C., Sander, E.L., Ma, K.H., Colwell, R.K., Ellison, A.M., 2014. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monograph, 84, 45-67. DOI: https://doi.org/10.1890/13-0133.1

Chao, A., Wang, Y.T., Jost, L., 2013. Entropy and the species accumulation curve: a novel entropy estimator via discovery rates of new species. Met Ecol Evol, 4, 1091-1100. DOI: https://doi.org/10.1111/2041-210X.12108

Cleveland, C.C., Liptzin, D., 2007. C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry, 85, 235-252. DOI: https://doi.org/10.1007/s10533-007-9132-0

Collinson, N.H., Biggs, J., Corfield, A., Hodson, M.J., Walker, D., Whitfield, M., Williams, P.J., 1995. Temporary and permanent ponds: an assessment of the effects of drying out on the conservation value of aquatic macroinvertebrate communities. Biol Conserv, 74, 125-133. DOI: https://doi.org/10.1016/0006-3207(95)00021-U

Cromack, K., Sollins, P., Graustein, W.C., Speidel, K., Todd, A.W., Spycher, G., Li, C.Y., Todd, R.L., 1979. Calcium oxalate accumulation and soil weathering in mats of Hysterangium crassum. Soil Biol Biochem, 11, 463-468. DOI: https://doi.org/10.1016/0038-0717(79)90003-8

Cronk, J.K., Fennessy, M.S., 2001. Wetland plants: biology and ecology. Lewis Publishers, Boca Raton, 462 pp.

Dolinar, N., Regvar, M., Abram, D., Gaberščik, A., 2016. Water-level fluctuations as a driver of Phragmites australis primary productivity, litter decomposition, and fungal root colonisation in an intermittent wetland. Hydrobiologia, 774, 69-80. DOI: https://doi.org/10.1007/s10750-015-2492-x

Dolinar, N., Rudolf, M., Šraj, N., Gaberščik, A., 2010. Environmental changes affect ecosystem services of the intermittent Lake Cerknica. Ecol Complexity, 7, 403-409. DOI: https://doi.org/10.1016/j.ecocom.2009.09.004

Dolinar, N., Šraj, N., Gaberščik, A., 2011. Water regime changes and the function of an intermittent wetland. In: Vymazal, J. (ed.), Water and Nutrient Management in Natural and Constructed Wet- lands. Springer, Dordrecht, pp. 251-262. DOI: https://doi.org/10.1007/978-90-481-9585-5_18

Du Laing, G., Van Ryckegem, G., Tack, F.M.G., Verloo, M.G., 2006. Metal accumulation in intertidal litter through decomposing leaf blades, sheaths and stems of Phragmites australis. Chemosphere, 63, 1815-1823. DOI: https://doi.org/10.1016/j.chemosphere.2005.10.034

Gardes, M., Bruns, T.D., 1993. ITS primers with enhanced specificity of basidiomycetes: application to the identification of mycorrhizae and rusts. Molec Ecol, 2, 113-118. DOI: https://doi.org/10.1111/j.1365-294X.1993.tb00005.x

Good, I.J., 1953. The population frequencies of species and the estimation of population parameters. Biometrika, 40, 237-264. DOI: https://doi.org/10.1093/biomet/40.3-4.237

Kaisermann, A., Maron, P.A., Beaumelle, L., Lata, J.C., 2015. Fungal communities are more sensitive indicators to non-extreme soil moisture variations than bacterial communities. App Soil Ecol, 86, 158-164. DOI: https://doi.org/10.1016/j.apsoil.2014.10.009

Kasurinen, A., Riikonen, J., Oksanen, E., Vapaavouri, E., Holopainen, T., 2006. Chemical composi- tion and decomposition of silver birch leaf litter produced under elevated CO2 and O3. Plant Soil, 282, 261-280. DOI: https://doi.org/10.1007/s11104-005-6026-6

Komínková, D., Kuehn, K.A., Büsing, N., Steiner, D., Gessner, M.O., 2000. Microbial biomass, growth, and respiration associated with submerged litter of Phragmites australis decomposing in a littoral reed stand of a large lake. Aquat Microb Ecol, 22, 271-282. DOI: https://doi.org/10.3354/ame022271

Kump, P., Nečemer, M., Vogel-Mikuš, K., Rupnik, Z., Ponikvar, D., Pelicon, P., Pongrac, P., Simčič, J., Budnar, M., 2007. Improvement of the XRF quantification and enhancement of the combined applications by EDXRF andMicro PIXE. In: First research coordination meeting under co-ordinated research project on “Unification of nuclear spectrometries: integrated techniques as a new tool for materials research”: report: Vienna, 16–20 April, 2007, (IAEA/AL/, 181). IAEA, Vienna, pp. 91–95.

Langhans, S.D., Tockner, K., 2006. The role of timing, duration and frequency of inundation in controlling leaf litter decomposition in a river-floodplain ecosystem (Tagliamento, northeastern Italy). Oecologia, 147, 501-509. DOI: https://doi.org/10.1007/s00442-005-0282-2

Likar, M., Regvar, M., Mandič-Mulec, I., Stres, B., Bothe, H., 2009. Diversity and seasonal variations of mycorrhiza and rhizosphere bacteria in three common plant species at the Slovenian Ljubljana Marsh. Biol Fertil Soil, 45, 573-583. DOI: https://doi.org/10.1007/s00374-009-0361-3

Longhi, D., Bartoli, M., Viaroli, P., 2008. Decomposition of four macrophytes in wetland sediments: organic matter and nutrient decay and associated benthic processes. Aquat Bot, 89, 303-310. DOI: https://doi.org/10.1016/j.aquabot.2008.03.004

Loranger, G., Ponge, J.F., Imbert, D., Lavelle, P., 2002. Leaf decomposition in two semi-evergreen tropical forests: influence of litter quality. Biol Fert Soil, 35, 247-252. DOI: https://doi.org/10.1007/s00374-002-0467-3

Martinčič, A., 2003. Praprotnice in semenke. In: Gaberščik A (ed) Jezero, ki izginja: Monografija o Cerkniškem jezeru. Ljubljana, Društvo ekologov Slovenije, pp. 72-80.

Martinčič, A., Leskovar, I., 2003. Vegetacija. In: Gaberščik A (ed) Jezero, ki izginja: Monografija o Cerkniškem jezeru. Ljubljana, Društvo ekologov Slovenije, pp. 80-96.

Neckles, H.A., Neill, C., 1994. Hydrologic control of litter decomposition in seasonally flooded prairie marshes. Hydrobiologia, 286, 155–165. DOI: https://doi.org/10.1007/BF00006247

Nečemer, M., Kump, P., Ščančar, J., Jaćimović, R., Simčič, J., Pelicon, P., Budnar, M., Jeran, Z., Pongrac, P., Regvar, M., Vogel-Mikuš, K., 2008. Application of X-ray fluorescence analytical techniques in phytoremediation and plant biology studies. Spectrochim Acta B, 63, 1240-1247. DOI: https://doi.org/10.1016/j.sab.2008.07.006

Oksanen, J., Guillaume Blanchet, F., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., 2016. vegan: Community Ecology Package. R package version 2.4-1. https://CRAN.R-project.org/ package=vegan

Purchase, D., Scholes, L.N.L., Revitt, D.M., Shutes, R.B.E., 2009. Effects of temperature on metal tolerance and the accumulation of Zn and Pb by metal-tolerant fungi isolated from urban runoff treatment wetlands. J App Microbiol, 106, 1163-1174. DOI: https://doi.org/10.1111/j.1365-2672.2008.04082.x

R Core Team, 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Ryder, D.S., Horwitz, P., 1995. Seasonal water regimes and leaf litter processing in a wetland on the Swan Coastal Plain, Western Australia. Mar Freshw Res, 46, 1077-1084. DOI: https://doi.org/10.1071/MF9951077

Schaller, J., Brackhage, C., Mkandawire, M., Dudel, E.G., 2011. Metal/ metalloid accumulation/ remobilization during aquatic litter decomposition in freshwater: a review. Sci Tot Environ, 409, 4891-4898. DOI: https://doi.org/10.1016/j.scitotenv.2011.08.006

Van Espen, P., Janssens, K., 1993. Spectrum Evaluation. In: Van Grieken R, Markowicz A (eds) Handbook of X-ray Spectrometry, Methods and techniques. Marcel Dekker, New York, pp. 181–293.

Van Ryckegem, G., Gessner, M.O., Verbeken, A., 2007. Fungi on leaf blades of Phragmites australis in a brackish tidal marsh: diversity, succession and leaf decomposition. Microb Ecol, 53, 600-611. DOI: https://doi.org/10.1007/s00248-006-9132-y

Van Ryckegem, G., Van Driessche, G., Van Beeumen, J.J., Verbeken, A., 2006. The estimated impact of fungi on nutrient dynamics during decomposition of Phragmites australis leaf sheaths and stems. Microb Ecol, 52, 564-574. DOI: https://doi.org/10.1007/s00248-006-9003-6

Vekemans, B., Janssens, K., Vincze, L., Adams, F., Van Espen, P., 1994. Analysis of X-ray spectra by iterative least squares (AXIL): new developments. X-ray Spectrom, 23, 278–285. DOI: https://doi.org/10.1002/xrs.1300230609

Vymazal, J., Kröpfelová, L., Švehla, J., Chrastný, V., Štíchová, J., 2009. Trace elements in Phragmites australis growing in constructed wetlands for treatment of municipal wastewater. Ecolog Eng, 53, 303-309. DOI: https://doi.org/10.1016/j.ecoleng.2008.04.007

Wallis, E., Raulings, E., 2011. Relationship between water regime and hummock-building by Melaleuca ericifolia and Phragmites australis in a brackish wetland. Aquat Bot, 95, 182-188. DOI: https://doi.org/10.1016/j.aquabot.2011.05.006

Webster, J.R., Benfield, E.F., 1986. Vascular plant breakdown in freshwater ecosystems. Ann Rev Ecol System, 17, 567-594. DOI: https://doi.org/10.1146/annurev.es.17.110186.003031

White, T.J., Bruns, S., Lee, S., Taylor, J., 1990. Amplification and direct sequencing of fungal ribo- somal RNA genes for phylogenetics. In: Innis, M., Gelfand, G., Sninsky, J., White, T. (eds.) PCR Protocols: A Guide to Methods Applications. Academic Press, Orlando, Florida, pp. 215-322. DOI: https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Windham, L., Weis, J.S., Weis, P., 2003. Uptake and distribution of metals in two dominant salt marsh macrophytes, Spartina alterniflora (cordgrass) and Phragmites australis (common reed). Estuar Coast Shelf Sci, 56, 63-72. DOI: https://doi.org/10.1016/S0272-7714(02)00121-X

Windham, L., Weis, J.S., Weis, P., 2004. Metal dynamics of plant litter of Spartina alterniflora and Phragmites australis in metal-contaminated salt marshes. Part 1: Patterns of decomposition and metal uptake. Environ Toxicol Chem, 23, 1520-1528. DOI: https://doi.org/10.1897/03-284

Zawislanski, P.T., Chau, S., Mountford, H., Wong, H.C., Sears, T.C., 2001. Accumulation of selenium and trace metals on plant litter in a tidal marsh. Estuar Coast Shelf Sci, 52, 589-603. DOI: https://doi.org/10.1006/ecss.2001.0772

Downloads

Published

01.12.2018

Issue

Section

Original Research Paper

How to Cite

Likar, M., Dolinar, N., Vogel-Mikuš, K., Gaberščik, A., & Regvar, M. (2018). Elemental composition and fungal colonisation of decomposing Phragmites australis (Cav.) Trin. ex Steud. litter at different water regimes. Acta Biologica Slovenica, 61(2), 71-84. https://doi.org/10.14720/abs.61.2.15896