Effect of selenium, iodine and their combination on development of Tartary buckwheat sprouts

Authors

  • Sara Gorše
  • Aleksandra Golob
  • Mateja Germ

DOI:

https://doi.org/10.14720/abs.61.2.15897

Keywords:

Tartary buckwheat, sprouts, selenium, iodine

Abstract

Tartary buckwheat (Fagopyrum tataricum Gaertn) is becoming more and more popular due to its health benefits for humans. It contains important fibres, vitamins, certain minerals and antioxidants asrutin. Sprouts are a hot trend in the food production and nutrition. Enrichment of sprouts with iodine (I) and selenium (Se) may prevent endemic deficiency of these elements for humans and animals. The aim of the study was to found out the effect of selenate (Se(VI)), iodate (I(V)) and their combination on morphological, physiological and biochemical properties of Tartary buckwheat sprouts. Tartary seedswere soaked in solutions with Se(VI) (20 mg/L), I(V) (1500 mg/L) or in Se(VI) + I(V) (20 mg/L Se(VI) +1500 mg/L (I(V)). Experiment was performed in growth chamber in two repetitions. Measurements were performed three weeks after germination. The solution of iodate and combination of selenate and iodate lowered germination rate of sprouts. There was no effect of the treatments on the amount of chlorophyll a, anthocyanins and UV absorbing compounds. The amount of rutin was the highest in control sprouts. According to physiological measurements, control sprouts and sprouts from treated seeds were not stressed by the treatments.

References

Borst Pauwels, G.W.F.H., 1962. An investigation into the effects of iodide and iodate on plant growth. Plant and Soil, 16, 284–292. DOI: https://doi.org/10.1007/BF01381340

Dai, J.L., Zhu, Y., Huang, Y.Z., Zhang, M., Song, J. L., 2006. Availability of iodide and iodate to spinach (Spinacia oleracea L.) in relation to total iodine in soil solution. Plant Soil, 289, 301–308. DOI 10.1007/s11104-006-9139-7 DOI: https://doi.org/10.1007/s11104-006-9139-7

Drumm, H., Mohr, H., 1978. The mode of interaction between blue (UV) light photoreceptor and phytochrome in anthocyanin formation of the sorghum seedling. Photochemistry and Photobio- logy, 27, 241–248. DOI: https://doi.org/10.1111/j.1751-1097.1978.tb07595.x

Dziedzic, K., Górecka, D., Szwengiel, A., Olejnik, A., Rychlik, J., Kreft, I., Drożdżyńska, A., Walkowiak, J., 2018. The cytotoxic effect of artificially digested buckwheat products on HT-29 colon cancer cells. Journal of Cereal Science, 83, 68–73. DOI: https://doi.org/10.1016/j.jcs.2018.07.020

Germ, M., Kacjan Maršić, N., Turk, J., Pirc, M., Golob, A., Jerše, A., Kroflič, A., Šircelj, H., Stibilj, V., 2015. The effect of different compounds of selenium and iodine on selected biochemical and physiological characteristics in common buckwheat and pumpkin sprouts. Acta Biologica Slo- venica, 58 (1), 35–44.

Germ, M., Kreft, I., Osvald, J., 2005. Influence of UV-B exclusion and selenium treatment on pho- tochemical efficiency of photosystem II; Yield and respiratory potential in pumpkins (Cucurbita pepo L.). Plant Physiology and Biochemistry, 43, 445–448. DOI: https://doi.org/10.1016/j.plaphy.2005.03.004

Golob, A., Germ, M., Kreft, I., Zelnik, I., Kristan, U., Stibilij, V., 2016. Selenium uptake and Se compounds in Se-treated buckwheat. Acta Botanica Croatica, 75(1), 17–24. DOI: https://doi.org/10.1515/botcro-2016-0016

Hawrylak-Nowak, B., 2008. Changes in anthocyanin content as indicator of maize sensitivity to selenium. Journal of Plant Nutrition, 31, 1232–1242. DOI: https://doi.org/10.1080/01904160802134962

Jerše, A., Kacjan Maršić, N., Šircelj, H., Germ, M., Kroflič, A., Stibilj, V., 2017. Seed soaking in I and Se solutions increases concentrations of both elements and changes morphological and some physiological parameters of pea sprouts. Plant physiology and biochemistry, 118, 285–294. DOI: https://doi.org/10.1016/j.plaphy.2017.06.009

Ji, H., Tang, W., Zhou, X., Wu, Y., 2016. Combined effects of blue and ultraviolet lights on the accumulation of flavonoids in Tartary buckwheat sprouts. Polish Journal of Food and Nutrition Sciences, 66(2), 93–98. DOI: 10.1515/pjfns-2015-0042. DOI: https://doi.org/10.1515/pjfns-2015-0042

Kenner, A.A., Ahmed, S.I., 1975. Measurements of electron transport activities in marine phytoplankton. Marine Biology, 33, 119–127. DOI: https://doi.org/10.1007/BF00390716

Kim, S.L., Kim, S.K., Park, C.H., 2004. Introduction and nutritional evaluation of buckwheat sprouts as a new vegetable. Food Research International, 37, 319–327. DOI: https://doi.org/10.1016/j.foodres.2003.12.008

Krzepilko, A., Zych-Wezyk, I., Swiecilo, A., Molas, J., Skwarylo-Bednarz, B. 2016. Effect of iodine biofortification of lettuce seedlings on their mineral composition and biological quality. Journal of Elementology, 21(4), 1071–1080. doi: 10.5601/jelem.2015.20.4.1022 DOI: https://doi.org/10.5601/jelem.2015.20.4.1022

Kreft, I., Fabjan, N., Yasumoto, K., 2006. Rutin content in buckwheat (Fagopyrum esculentum Moench) food materials and products. Food Chemistry, 98(3), 508–512. doi: 10.1016/j.fo- odchem.2005.05.081 DOI: https://doi.org/10.1016/j.foodchem.2005.05.081

Lichtenthaler, H.K., Buschmann, C., 2001a. Extraction of photosynthetic tissues: chlorophylls and carotenoids. Current Protocols in Food Analytical Chemistry, F4.2.1-F4.2.6. John Wiley in Sons Inc., New York.

Lichtenthaler, H.K., Buschmann, C., 2001b. Chlorophylls and carotenoids: measurement and cha- racterisation by UV-VIS. Current Protocols in Food Analytical Chemistry, F4.3.1-F4.3.8. John Wiley in Sons Inc., New York. DOI: https://doi.org/10.1002/0471142913.faf0403s01

Mahdavian, K., Kalantari, K.M., Ghorbanli, M., Torkzade, M., 2008. The effects of salicylic acid on pigment contents in ultraviolet radiation stressed pepper plants. Biologia Plantarum, 52(1), 170–172. Nakamura, K., Naramoto, K., Koyama, M., 2013. Blood-pressure-lowering effect of fermented DOI: https://doi.org/10.1007/s10535-008-0037-0

buckwheat sprouts in spontaneously hypertensive rats. Journal of Functional Foods, 5, 406–415.

Nawaz, F., Ashraf, M.Y., Ahmad, R., Waraich, E.A., Shabbir, R., Hussain, R.A., 2017. Selenium supply methods and time of application influence spring wheat (Triticum aestivum L.) yield under water deficit conditions. Journal of Agricultural Science, 155, 643–656. DOI: https://doi.org/10.1017/S0021859616000836

Osmić, A., Golob, A., Germ, M., 2017. The effect of selenium and iodine on selected biochemical and morphological characteristics in kohlrabi sprouts (Brassica oleracea L. var. gongylodes L.) Acta Biologica Slovenica, 60(1), 41–51.

Piątkowska, E., Kopeć, A., Bieżanowska Kopeć R., Pysz, M., Kapusta-Duch, J., Koronowicz, A.A., Smoleń, S., Skoczylas, Ł., Ledwożyw-Smoleń, I., Rakoczy, R., Maślak, E., 2016. The impact of carrot enriched in iodine through soil fertilization on iodine concentration and selected biochemical parameters in Wistar rats. PLoS ONE, 11(4), e0152680. DOI: https://doi.org/10.1371/journal.pone.0152680

Pilon-Smits, E.A.H., Quinn, C.F., Tapken, W., Malagoli, M., Schiavon, M., 2009. Physiological fun- ctions of beneficial elements. Current Opinion in Plant Biology, 12, 267–274. DOI: https://doi.org/10.1016/j.pbi.2009.04.009

Schreiber, U., Kühl, M., Klimant, I., Reising, H., 1996. Measurement of chlorophyll fluorescence within leaves using modified PAM fluorometer with a fiber-optic microprobe. Photosynthesis Research, 47, 103–109. DOI: https://doi.org/10.1007/BF00017758

Seppänen, M., Turakainen, M., Hartikainen, H., 2003. Selenium effects on oxidative stress in potato. Plant Science, 165, 311–319. DOI: https://doi.org/10.1016/S0168-9452(03)00085-2

Simmonds, M.S., 2003. Flavonoid–insect interactions: recent advances in our knowledge. Phytoche- mistry, 64(1), 21–30. DOI: https://doi.org/10.1016/S0031-9422(03)00293-0

Smoleń, S., Skoczylas, Ł., Rakoczy, R., Ledwożyw-Smoleń, I., Liszka-Skoczylas, M., Kopeć, A., Piątkowska, E., Bieżanowska-Kopeć, R., Pysz, M., Koronowicz, A., Kapusta-Duch, J., Sady, W., 2015. Selected aspects of nitrogen metabolism and quality of field-grown lettuce (Lactuca sativa L.) depending on the diversified fertilization with iodine and selenium compounds. Acta Scientiarum Polonorum Hortorum Cultus, 14(5), 159–175.

Starowicz, M., Ciesarová, Z., Zieliński, H., 2017. Analysis of the antioxidative properties and Maillard reaction products in ginger cakes enriched with rutin. Madridge Journal of Food Technology, 2(1), 44–52. DOI: https://doi.org/10.18689/mjft-1000107

Suzuki, T., Kim, S.J., Yamauchi, H., Takigawa, S., Honda, Y., Mukasa, Y., 2005. Characterization of a flavonoid 3-O-glucosyltransferase and its activity during cotyledon growh in buckwheat (Fagopyrum esculentum). Plant Science, 169, 943–948. DOI: https://doi.org/10.1016/j.plantsci.2005.06.014

Todirascu-Ciornea, E., Dumitru, G., 2015. Effect of 2,4-dinitrophenol and potassium iodate on wheat. Germination International Journal of Latest Research in Science and Technology, 4(4), 93–100.

Todirascu-Ciornea, E., Drochioiu, G., Stefanescu, R., Axinte, E. V., Dumitru, G., 2016. Morpho- logical and Biochemical Answer of the Wheat Seeds at Treatment with 2,4-Dinitrophenol and Potassium Iodate. Brazilian Archives of Biology and Technology, 59, e16150580. http://dx.doi. DOI: https://doi.org/10.1590/1678-4324-2016150580

org/10.1590/1678-4324-2016150580

Wieslander, G., Norback, D., 2001. Buckwheat allergy. Allergy, 56, 703–704. DOI: https://doi.org/10.1034/j.1398-9995.2001.056008703.x

Wronkowska, M., Haros, M., 2014. Wet-milling of buckwheat with hull and dehulled - The properties of the obtained starch fraction. Journal of Cereal Science, 60, 477–483. DOI: https://doi.org/10.1016/j.jcs.2014.09.004

Downloads

Published

01.12.2018

Issue

Section

Original Research Paper

How to Cite

Gorše, S., Golob, A., & Germ, M. (2018). Effect of selenium, iodine and their combination on development of Tartary buckwheat sprouts. Acta Biologica Slovenica, 61(2), 85-92. https://doi.org/10.14720/abs.61.2.15897