Preliminary experiments into colonization of microorganisms from activated sludge on different types of plastics


  • Tjaša Matjašič
  • Tanja Dreo
  • Zoran Samardžija
  • Oliver Bajt
  • Tjaša Kanduč
  • Tatjana Simčič
  • Nataša Mori



biofilm, plastics, SEM, isotopic composition of carbon, co-cultivation, UV sterilization


The presence of plastics in the environment is currently one of the most pressing global environmental problems. Microorganisms start to form biofilms on plastic surfaces when they first come in contact with the biosphere; however, these interactions and processes are little understood, especially in freshwaters. This study aimed to better understand the colonization process of microorganisms from activated sludge on plastic materials exhibiting different surface characteristics. We inoculated synthetic fabric (PET), water bottles (PET), and plastic bags for packing vegetables and fruits (HDPE) with microorganisms from activated sludge. Mixtures of plastics and activated sludge, as well as the control, were incubated at 22-24°C in Bushnell Haas (BH) liquid medium and shaken at 120 rpm for two months. The mixtures were sub-sampled weekly and seeded into fresh BH medium with test plastic materials to avoid feeding microorganisms on dead biomass. The colonization was followed by measuring optical density (OD600) of liquid medium, by measurements of isotopic composition of carbon (δ13C) in untreated and treated plastic materials and, with in-specting the plastics surface with scanning electron microscopy (SEM). Overall, the study confirmed differences between colonizing microorganisms on different plastic material when comparing SEM micrographs of materials from the flasks inoculated with activated sludge. The texture of the HDPE bag changed during the experiment in both, control and inoculated flasks, but it is not clear whether the observed changes were due to abiotic or biotic factors. We concluded that microorganisms from activated sludge are capable of colonizing both PET and HDPE materials, and biofilm formation is most probably influenced by the chemical composition of plastics and their surface characteristics.


Al-Balakocy, N., Shalaby, S. E., 2017. Imparting antimicrobial properties to polyester and polyamide fibers-state of the art. Journal of the Textile Association, 78, 179-201.

Arkatkar, A., Arutchelvi, J., Bhaduri, S., Uppara, P. V., Doble, M. 2009. Degradation of unpretreated and thermally pretreated polypropylene by soil consortia. International Biodeterioration and Bio- degradation, 63(1), 106-111. DOI:

Arkatkar, A., Juwarkar, A. A., Bhaduri, S., Uppara, P. V., Doble, M., 2010. Growth of Pseudomonas and Bacillus biofilms on pretreated polypropylene surface. International Biodeterioration and Biodegradation, 64(6), 530-536. doi: DOI:

Auta, H. S., Emenike, C. U., Fauziah, S. H., 2017. Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation. Environmental Pollution, 231, 1552-1559. doi: 10.1016/j.envpol.2017.09.043. DOI:

Auta, H. S., Emenike, C. U., Jayanthi, B., Fauziah, S. H., 2018. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sedi- ment. Marine pollution bulletin, 127, 15-21. doi: DOI:

Awasthi, S., Srivastava, P., Singh, P., Tiwary, D., Mishra, P. K., 2017. Biodegradation of thermally treated high-density polyethylene (HDPE) by Klebsiella pneumoniae CH001. 3 Biotech, 7(5), 332. doi: 10.1007/s13205-017-0959-3 DOI:

Battin, T. J., Besemer, K., Bengtsson, M. M., Romani, A. M., Packmann, A. I., 2016. The ecology and biogeochemistry of stream biofilms. Nature Reviews Microbiology, 14(4), 251-263. doi: 10.1038/ nrmicro.2016.15 DOI:

Berto, D., Rampazzo, F., Gion, C., Noventa, S., Ronchi, F., Traldi, U., Giorgi, G., Cicero, A. M., Giova- nardi, O., 2017. Preliminary study to characterize plastic polymers using elemental analyser/isotope ratio mass spectrometry (EA/IRMS). Chemosphere, 176, 47-56. doi: chemosphere.2017.02.090 DOI:

Bushnell, L. D., Haas, H. F., 1941. The utilization of certain hydrocarbons by microorganisms. Journal of Bacteriology, 41(5), 653-673. DOI:

Caruso, G., 2020. Microbial Colonization in Marine Environments: Overview of Current Knowledge and Emerging Research Topics. Journal of Marine Science and Engineering, 8(2), 78. DOI:

Dang, H., Lovell, C. R., 2016. Microbial Surface Colonization and Biofilm Development in Marine Environments. Microbiology and Molecular Biology Reviews, 80(1), 91-138. doi: 10.1128/ mmbr.00037-15 DOI:

Dobretsov, S., 2010. Marine Biofilms. In: S., Dürr and J. C., Thomason (Eds.), Biofouling (pp. 123-136). Dunne, W. M., 2002. Bacterial Adhesion: Seen Any Good Biofilms Lately? Clinical Microbiology Reviews, 15(2), 155-166. doi: 10.1128/cmr.15.2.155-166.2002 DOI:

Eckert, E. M., Di Cesare, A., Kettner, M. T., Arias-Andres, M., Fontaneto, D., Grossart, H.-P., Corno, G., 2018. Microplastics increase impact of treated wastewater on freshwater microbial community. Environmental Pollution, 234, 495-502. doi: DOI:

Francis, V., Subin, S. R., Bhat, S. G., Thachil, E. T., 2011. Characterization of Linear Low-Density Polyethylene/Poly(vinyl alcohol) Blends and Their Biodegradability by Vibrio sp. Isolated from Marine Benthic Environment. Journal of Applied Polymer Science, 124, 257-265. doi: 10.1002/ app.34155 DOI:

Harrison, J. P., Hoellein, T. J., Sapp, M., Tagg, A. S., Ju-Nam, Y., Ojeda, J. J., 2018. Microplastic- Associated Biofilms: A Comparison of Freshwater and Marine Environments. In M. Wagner and S. Lambert (Eds.), Freshwater Microplastics : Emerging Environmental Contaminants? (pp. 181-201). Cham: Springer International Publishing. DOI:

Huang, J. T., Cui, C. N., 2012. Study on Biodegradable Behavior of Polyesters in the Soil of FuJian Local. Advanced Materials Research, 472-475, 1881-1884. doi: net/amr.472-475.1881 DOI:

Jacquin, J., Cheng, J., Odobel, C., Pandin, C., Conan, P., Pujo-Pay, M., Barbe, V., Meistertzheim, A.-L., and Ghiglione, J.-F., 2019) Microbial Ecotoxicology of Marine Plastic Debris: A Review on Colonization and Biodegradation by the “Plastisphere”. Frontiers in Microbiology, 10(865). doi: 10.3389/fmicb.2019.00865 DOI:

Jemec Kokalj, A., Kuehnel, D., Puntar, B., Žgajnar Gotvajn, A., Kalčikova, G., 2019. An exploratory ecotoxicity study of primary microplastics versus aged in natural waters and wastewaters. Envi- ronmental Pollution, 254, 112980. doi: DOI:

Khatoon, N., Naz, I., Ali, M. I., Ali, N., Jamal, A., Hameed, A., Ahmed, S., 2014. Bacterial succession and degradative changes by biofilm on plastic medium for wastewater treatment. Journal of Basic Microbiology, 54(7), 739-749. doi: 10.1002/jobm.201300162 DOI:

Kowalczyk, A., Chyc, M., Ryszka, P., Latowski, D., 2016. Achromobacter xylosoxidans as a new mi- croorganism strain colonizing high-density polyethylene as a key step to its biodegradation. Environmental Science and Pollution Research, 23(11), 11349-11356. doi: 10.1007/s11356-016-6563-y DOI:

Li, J., Liu, H., Paul Chen, J., 2018. Microplastics in freshwater systems: A review on occurrence, en- vironmental effects, and methods for microplastics detection. Water Research, 137, 362-374. doi: DOI:

Lobelle, D., Cunliffe, M., 2011. Early microbial biofilm formation on marine plastic debris. Marine Pollution Bulletin, 62(1), 197-200. doi: DOI:

Lv, X. Dong, Q., Zuo, Z. ,Liu, Y. Huang, X., Wu, W.-M., 2019. Microplastics in a municipal wastewater treatment plant: Fate, dynamic distribution, removal efficiencies, and control strategies. Journal of Cleaner Production, 225, 579-586. doi: DOI:

McCormick, A., Hoellein, T. J., Mason, S. A., Schluep, J., Kelly, J. J., 2014. Microplastic is an Abundant and Distinct Microbial Habitat in an Urban River. Environmental Science and Technology, 48(20), 11863-11871. doi: 10.1021/es503610r DOI:

McDonnell, G., Russell, A. D., 1999. Antiseptics and Disinfectants: Activity, Action, and Resistance. Clinical Microbiology Reviews, 12(1), 147-179. doi: 10.1128/cmr.12.1.147 DOI:

Meechan, P. J., Wilson, C., 2006. Use of Ultraviolet Lights in Biological Safety Cabinets: A Contrarian View. Applied Biosafety, 11(4), 222-227. DOI:

Mohan, A. J., Sekhar, V. C., Bhaskar, T., Nampoothiri, K. M., 2016. Microbial assisted High Im- pact Polystyrene (HIPS) degradation. Bioresource Technology, 213, 204-207. doi: https://doi. org/10.1016/j.biortech.2016.03.021 DOI:

Mohanrasu, K., Premnath, N., Siva Prakash, G., Sudhakar, M., Boobalan, T., Arun, A., 2018. Explo- ring multi potential uses of marine bacteria; an integrated approach for PHB production, PAHs and polyethylene biodegradation. Journal of Photochemistry and Photobiology, 185, 55-65. doi: 10.1016/j.jphotobiol.2018.05.014 DOI:

Oberbeckmann, S., Löder, M. G. J., Labrenz, M., 2015. Marine microplastic-associated biofilms – a review. Environmental Chemistry, 12(5), 551-562. doi: DOI:

Oberbeckmann, S., Loeder, M. G. J., Gerdts, G., Osborn, A. M., 2014. Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in Northern European waters. FEMS Microbiology Ecology, 90(2), 478-492. doi: 10.1111/1574-6941.12409 DOI:

Ogonowski, M., Motiei, A., Ininbergs, K., Hell, E., Gerdes, Z., Udekwu, K. I., Bacsik, Z., Gorokhova, E., 2018. Evidence for selective bacterial community structuring on microplastics. Environmental Microbiology, 20(8), 2796-2808. doi: 10.1111/1462-2920.14120 DOI:

Parrish, K., Fahrenfeld, N. L., 2019. Microplastic biofilm in fresh- and wastewater as a function of microparticle type and size class. Environmental Science: Water Research and Technology, 5(3), 495-505. doi: 10.1039/C8EW00712H DOI:

Roager, L., Sonnenschein, E. C., 2019. Bacterial Candidates for Colonization and Degradation of Ma- rine Plastic Debris. Environmental Science and Technology, 53(20), 11636-11643. doi: 10.1021/ acs.est.9b02212 DOI:

Rummel, C. D., Jahnke, A., Gorokhova, E., Kühnel, D., Schmitt-Jansen, M., 2017. Impacts of Biofilm Formation on the Fate and Potential Effects of Microplastic in the Aquatic Environment. Envi- ronmental Science and Technology Letters, 4(7), 258-267. doi: 10.1021/acs.estlett.7b00164 DOI:

Smith, B. C., 2011. Fundamentals of Fourier transform infrared spectroscopy: CRC press. DOI:

Stevenson, K., McVey, A. F., Clark, I. B. N., Swain, P. S., Pilizota, T., 2016. General calibration of microbial growth in microplate readers. Scientific Reports, 6, 38828. doi: 10.1038/srep38828 DOI:

Wagner, M., Lambert, S., 2018. Freshwater Microplastics Springer International Publishing. DOI:

Wagner, M., Scherer, C., Alvarez-Muñoz, D., Brennholt, N., Bourrain, X., Buchinger, S., Fries, E., Grosbois, C., Klasmeier, J., Marti, T., Rodriguez-Mozaz, S., Urbatzka, R., Vethaak, A. D., Winther- Nielsen, M., Reifferscheid, G., 2014. Microplastics in freshwater ecosystems: what we know and what we need to know. Environmental Sciences Europe, 26(1), 12. doi: 10.1186/s12302-014-0012-7 DOI:

Wu, L. Ning, D., Zhang, B. Li, Y., Zhang, P., Shan, X., Zhang, Q., Brown, M., Li, Z., Van Nostrand, J. D., Ling, F., Xiao, N., Zhang, Y., Vierheilig, J., Wells, G. F., Yang, Y., Deng, Y., Tu, Q., Wang, A., Acevedo, D., Agullo-Barcelo, M., Alvarez, P. J. J., Alvarez-Cohen, L., Andersen, G. L., de Araujo, J. C., Boehnke, K., Bond, P., Bott, C. B., Bovio, P., Brewster, R. K., Bux, F., Cabezas, A., Cabrol, L., Chen, S., Criddle, C. S., Deng, Y., Etchebehere, C., Ford, A., Frigon, D., Gómez, J. S., Griffin, J. S., Gu, A. Z., Habagil, M., Hale, L., Hardeman, S. D., Harmon, M., Horn, H., Hu, Z., Jauffur, S.,

Johnson, D. R., Keller, J., Keucken, A., Kumari, S., Leal, C. D., Lebrun, L. A., Lee, J., Lee, M., Lee, Z. M. P., Li, Y., Li, Z., Li, M., Li, X., Ling, F., Liu, Y., Luthy, R. G., Mendonça-Hagler, L. C., de Menezes, F. G. R., Meyers, A. J., Mohebbi, A., Nielsen, P. H., Ning, D., Oehmen, A., Palmer, A., Parameswaran, P., Park, J., Patsch, D., Reginatto, V., de los Reyes, F. L., Rittmann, B. E., Robles, A. N., Rossetti, S., Shan, X., Sidhu, J., Sloan, W. T., Smith, K., de Sousa, O. V., Stahl, D. A., Stephens, K., Tian, R., Tiedje, J. M., Tooker, N. B., Tu, Q., Van Nostrand, J. D., De los Cobos Vasconcelos, D., Vierheilig, J., Wagner, M., Wakelin, S., Wang, A., Wang, B., Weaver, J. E., Wells, G. F., West, S., Wilmes, P., Woo, S.-G., Wu, L., Wu, J.-H., Wu, L., Xi, C., Xiao, N., Xu, M., Yan, T., Yang, Y., Yang, M., Young, M., Yue, H., Zhang, B., Zhang, P., Zhang, Q., Zhang, Y., Zhang, T., Zhang, Q., Zhang, W., Zhang, Y., Zhou, H., Zhou, J., Wen, X., Curtis, T. P., He, Q., He, Z., Brown, M., Zhang, T., He, Z., Keller, J., Nielsen, P. H., Alvarez, P. J. J., Criddle, C. S., Wagner, M., Tiedje, J. M., He, Q., Curtis, T. P., Stahl, D. A., Alvarez-Cohen, L., Rittmann, B. E., Wen, X., Zhou, J., Global Water Microbiome, C., 2019. Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nature Microbiology, 4(7), 1183-1195. doi: 10.1038/s41564-019-0426-5 DOI:

Yoo, J.-H., 2018. Review of Disinfection and Sterilization – Back to the Basics. Infection and Chemo- therapy, 50(2), 101-109. doi: DOI:






Original Research Paper

How to Cite

Matjašič, T., Dreo, T., Samardžija, Z., Bajt, O., Kanduč, T., Simčič, T., & Mori, N. (2020). Preliminary experiments into colonization of microorganisms from activated sludge on different types of plastics. Acta Biologica Slovenica, 63(1), 45-61.

Similar Articles

1-10 of 53

You may also start an advanced similarity search for this article.