Preliminary experiments into colonization of microorganisms from activated sludge on different types of plastics

Authors

  • Tjaša Matjašič
  • Tanja Dreo
  • Zoran Samardžija
  • Oliver Bajt
  • Tjaša Kanduč
  • Tatjana Simčič
  • Nataša Mori

DOI:

https://doi.org/10.14720/abs.63.1.15914

Keywords:

biofilm, plastics, SEM, isotopic composition of carbon, co-cultivation, UV sterilization

Abstract

The presence of plastics in the environment is currently one of the most pressing global environmental problems. Microorganisms start to form biofilms on plastic surfaces when they first come in contact with the biosphere; however, these interactions and processes are little understood, especially in freshwaters. This study aimed to better understand the colonization process of microorganisms from activated sludge on plastic materials exhibiting different surface characteristics. We inoculated synthetic fabric (PET), water bottles (PET), and plastic bags for packing vegetables and fruits (HDPE) with microorganisms from activated sludge. Mixtures of plastics and activated sludge, as well as the control, were incubated at 22-24°C in Bushnell Haas (BH) liquid medium and shaken at 120 rpm for two months. The mixtures were sub-sampled weekly and seeded into fresh BH medium with test plastic materials to avoid feeding microorganisms on dead biomass. The colonization was followed by measuring optical density (OD600) of liquid medium, by measurements of isotopic composition of carbon (δ13C) in untreated and treated plastic materials and, with in-specting the plastics surface with scanning electron microscopy (SEM). Overall, the study confirmed differences between colonizing microorganisms on different plastic material when comparing SEM micrographs of materials from the flasks inoculated with activated sludge. The texture of the HDPE bag changed during the experiment in both, control and inoculated flasks, but it is not clear whether the observed changes were due to abiotic or biotic factors. We concluded that microorganisms from activated sludge are capable of colonizing both PET and HDPE materials, and biofilm formation is most probably influenced by the chemical composition of plastics and their surface characteristics.

Metrics

Metrics Loading ...

References

Al-Balakocy, N., Shalaby, S. E., 2017. Imparting antimicrobial properties to polyester and polyamide fibers-state of the art. Journal of the Textile Association, 78, 179-201.

Arkatkar, A., Arutchelvi, J., Bhaduri, S., Uppara, P. V., Doble, M. 2009. Degradation of unpretreated and thermally pretreated polypropylene by soil consortia. International Biodeterioration and Bio- degradation, 63(1), 106-111. DOI: https://doi.org/10.1016/j.ibiod.2008.06.005

Arkatkar, A., Juwarkar, A. A., Bhaduri, S., Uppara, P. V., Doble, M., 2010. Growth of Pseudomonas and Bacillus biofilms on pretreated polypropylene surface. International Biodeterioration and Biodegradation, 64(6), 530-536. doi: https://doi.org/10.1016/j.ibiod.2010.06.002 DOI: https://doi.org/10.1016/j.ibiod.2010.06.002

Auta, H. S., Emenike, C. U., Fauziah, S. H., 2017. Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation. Environmental Pollution, 231, 1552-1559. doi: 10.1016/j.envpol.2017.09.043. DOI: https://doi.org/10.1016/j.envpol.2017.09.043

Auta, H. S., Emenike, C. U., Jayanthi, B., Fauziah, S. H., 2018. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sedi- ment. Marine pollution bulletin, 127, 15-21. doi: https://doi.org/10.1016/j.marpolbul.2017.11.036 DOI: https://doi.org/10.1016/j.marpolbul.2017.11.036

Awasthi, S., Srivastava, P., Singh, P., Tiwary, D., Mishra, P. K., 2017. Biodegradation of thermally treated high-density polyethylene (HDPE) by Klebsiella pneumoniae CH001. 3 Biotech, 7(5), 332. doi: 10.1007/s13205-017-0959-3 DOI: https://doi.org/10.1007/s13205-017-0959-3

Battin, T. J., Besemer, K., Bengtsson, M. M., Romani, A. M., Packmann, A. I., 2016. The ecology and biogeochemistry of stream biofilms. Nature Reviews Microbiology, 14(4), 251-263. doi: 10.1038/ nrmicro.2016.15 DOI: https://doi.org/10.1038/nrmicro.2016.15

Berto, D., Rampazzo, F., Gion, C., Noventa, S., Ronchi, F., Traldi, U., Giorgi, G., Cicero, A. M., Giova- nardi, O., 2017. Preliminary study to characterize plastic polymers using elemental analyser/isotope ratio mass spectrometry (EA/IRMS). Chemosphere, 176, 47-56. doi: https://doi.org/10.1016/j. chemosphere.2017.02.090 DOI: https://doi.org/10.1016/j.chemosphere.2017.02.090

Bushnell, L. D., Haas, H. F., 1941. The utilization of certain hydrocarbons by microorganisms. Journal of Bacteriology, 41(5), 653-673. DOI: https://doi.org/10.1128/jb.41.5.653-673.1941

Caruso, G., 2020. Microbial Colonization in Marine Environments: Overview of Current Knowledge and Emerging Research Topics. Journal of Marine Science and Engineering, 8(2), 78. DOI: https://doi.org/10.3390/jmse8020078

Dang, H., Lovell, C. R., 2016. Microbial Surface Colonization and Biofilm Development in Marine Environments. Microbiology and Molecular Biology Reviews, 80(1), 91-138. doi: 10.1128/ mmbr.00037-15 DOI: https://doi.org/10.1128/MMBR.00037-15

Dobretsov, S., 2010. Marine Biofilms. In: S., Dürr and J. C., Thomason (Eds.), Biofouling (pp. 123-136). Dunne, W. M., 2002. Bacterial Adhesion: Seen Any Good Biofilms Lately? Clinical Microbiology Reviews, 15(2), 155-166. doi: 10.1128/cmr.15.2.155-166.2002 DOI: https://doi.org/10.1128/CMR.15.2.155-166.2002

Eckert, E. M., Di Cesare, A., Kettner, M. T., Arias-Andres, M., Fontaneto, D., Grossart, H.-P., Corno, G., 2018. Microplastics increase impact of treated wastewater on freshwater microbial community. Environmental Pollution, 234, 495-502. doi: https://doi.org/10.1016/j.envpol.2017.11.070 DOI: https://doi.org/10.1016/j.envpol.2017.11.070

Francis, V., Subin, S. R., Bhat, S. G., Thachil, E. T., 2011. Characterization of Linear Low-Density Polyethylene/Poly(vinyl alcohol) Blends and Their Biodegradability by Vibrio sp. Isolated from Marine Benthic Environment. Journal of Applied Polymer Science, 124, 257-265. doi: 10.1002/ app.34155 DOI: https://doi.org/10.1002/app.34155

Harrison, J. P., Hoellein, T. J., Sapp, M., Tagg, A. S., Ju-Nam, Y., Ojeda, J. J., 2018. Microplastic- Associated Biofilms: A Comparison of Freshwater and Marine Environments. In M. Wagner and S. Lambert (Eds.), Freshwater Microplastics : Emerging Environmental Contaminants? (pp. 181-201). Cham: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-61615-5_9

Huang, J. T., Cui, C. N., 2012. Study on Biodegradable Behavior of Polyesters in the Soil of FuJian Local. Advanced Materials Research, 472-475, 1881-1884. doi: doi.org/10.4028/www.scientific. net/amr.472-475.1881 DOI: https://doi.org/10.4028/www.scientific.net/AMR.472-475.1881

Jacquin, J., Cheng, J., Odobel, C., Pandin, C., Conan, P., Pujo-Pay, M., Barbe, V., Meistertzheim, A.-L., and Ghiglione, J.-F., 2019) Microbial Ecotoxicology of Marine Plastic Debris: A Review on Colonization and Biodegradation by the “Plastisphere”. Frontiers in Microbiology, 10(865). doi: 10.3389/fmicb.2019.00865 DOI: https://doi.org/10.3389/fmicb.2019.00865

Jemec Kokalj, A., Kuehnel, D., Puntar, B., Žgajnar Gotvajn, A., Kalčikova, G., 2019. An exploratory ecotoxicity study of primary microplastics versus aged in natural waters and wastewaters. Envi- ronmental Pollution, 254, 112980. doi: https://doi.org/10.1016/j.envpol.2019.112980 DOI: https://doi.org/10.1016/j.envpol.2019.112980

Khatoon, N., Naz, I., Ali, M. I., Ali, N., Jamal, A., Hameed, A., Ahmed, S., 2014. Bacterial succession and degradative changes by biofilm on plastic medium for wastewater treatment. Journal of Basic Microbiology, 54(7), 739-749. doi: 10.1002/jobm.201300162 DOI: https://doi.org/10.1002/jobm.201300162

Kowalczyk, A., Chyc, M., Ryszka, P., Latowski, D., 2016. Achromobacter xylosoxidans as a new mi- croorganism strain colonizing high-density polyethylene as a key step to its biodegradation. Environmental Science and Pollution Research, 23(11), 11349-11356. doi: 10.1007/s11356-016-6563-y DOI: https://doi.org/10.1007/s11356-016-6563-y

Li, J., Liu, H., Paul Chen, J., 2018. Microplastics in freshwater systems: A review on occurrence, en- vironmental effects, and methods for microplastics detection. Water Research, 137, 362-374. doi: https://doi.org/10.1016/j.watres.2017.12.056 DOI: https://doi.org/10.1016/j.watres.2017.12.056

Lobelle, D., Cunliffe, M., 2011. Early microbial biofilm formation on marine plastic debris. Marine Pollution Bulletin, 62(1), 197-200. doi: https://doi.org/10.1016/j.marpolbul.2010.10.013 DOI: https://doi.org/10.1016/j.marpolbul.2010.10.013

Lv, X. Dong, Q., Zuo, Z. ,Liu, Y. Huang, X., Wu, W.-M., 2019. Microplastics in a municipal wastewater treatment plant: Fate, dynamic distribution, removal efficiencies, and control strategies. Journal of Cleaner Production, 225, 579-586. doi: https://doi.org/10.1016/j.jclepro.2019.03.321 DOI: https://doi.org/10.1016/j.jclepro.2019.03.321

McCormick, A., Hoellein, T. J., Mason, S. A., Schluep, J., Kelly, J. J., 2014. Microplastic is an Abundant and Distinct Microbial Habitat in an Urban River. Environmental Science and Technology, 48(20), 11863-11871. doi: 10.1021/es503610r DOI: https://doi.org/10.1021/es503610r

McDonnell, G., Russell, A. D., 1999. Antiseptics and Disinfectants: Activity, Action, and Resistance. Clinical Microbiology Reviews, 12(1), 147-179. doi: 10.1128/cmr.12.1.147 DOI: https://doi.org/10.1128/CMR.12.1.147

Meechan, P. J., Wilson, C., 2006. Use of Ultraviolet Lights in Biological Safety Cabinets: A Contrarian View. Applied Biosafety, 11(4), 222-227. DOI: https://doi.org/10.1177/153567600601100412

Mohan, A. J., Sekhar, V. C., Bhaskar, T., Nampoothiri, K. M., 2016. Microbial assisted High Im- pact Polystyrene (HIPS) degradation. Bioresource Technology, 213, 204-207. doi: https://doi. org/10.1016/j.biortech.2016.03.021 DOI: https://doi.org/10.1016/j.biortech.2016.03.021

Mohanrasu, K., Premnath, N., Siva Prakash, G., Sudhakar, M., Boobalan, T., Arun, A., 2018. Explo- ring multi potential uses of marine bacteria; an integrated approach for PHB production, PAHs and polyethylene biodegradation. Journal of Photochemistry and Photobiology, 185, 55-65. doi: 10.1016/j.jphotobiol.2018.05.014 DOI: https://doi.org/10.1016/j.jphotobiol.2018.05.014

Oberbeckmann, S., Löder, M. G. J., Labrenz, M., 2015. Marine microplastic-associated biofilms – a review. Environmental Chemistry, 12(5), 551-562. doi: https://doi.org/10.1071/EN15069 DOI: https://doi.org/10.1071/EN15069

Oberbeckmann, S., Loeder, M. G. J., Gerdts, G., Osborn, A. M., 2014. Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in Northern European waters. FEMS Microbiology Ecology, 90(2), 478-492. doi: 10.1111/1574-6941.12409 DOI: https://doi.org/10.1111/1574-6941.12409

Ogonowski, M., Motiei, A., Ininbergs, K., Hell, E., Gerdes, Z., Udekwu, K. I., Bacsik, Z., Gorokhova, E., 2018. Evidence for selective bacterial community structuring on microplastics. Environmental Microbiology, 20(8), 2796-2808. doi: 10.1111/1462-2920.14120 DOI: https://doi.org/10.1111/1462-2920.14120

Parrish, K., Fahrenfeld, N. L., 2019. Microplastic biofilm in fresh- and wastewater as a function of microparticle type and size class. Environmental Science: Water Research and Technology, 5(3), 495-505. doi: 10.1039/C8EW00712H DOI: https://doi.org/10.1039/C8EW00712H

Roager, L., Sonnenschein, E. C., 2019. Bacterial Candidates for Colonization and Degradation of Ma- rine Plastic Debris. Environmental Science and Technology, 53(20), 11636-11643. doi: 10.1021/ acs.est.9b02212 DOI: https://doi.org/10.1021/acs.est.9b02212

Rummel, C. D., Jahnke, A., Gorokhova, E., Kühnel, D., Schmitt-Jansen, M., 2017. Impacts of Biofilm Formation on the Fate and Potential Effects of Microplastic in the Aquatic Environment. Envi- ronmental Science and Technology Letters, 4(7), 258-267. doi: 10.1021/acs.estlett.7b00164 DOI: https://doi.org/10.1021/acs.estlett.7b00164

Smith, B. C., 2011. Fundamentals of Fourier transform infrared spectroscopy: CRC press. DOI: https://doi.org/10.1201/b10777

Stevenson, K., McVey, A. F., Clark, I. B. N., Swain, P. S., Pilizota, T., 2016. General calibration of microbial growth in microplate readers. Scientific Reports, 6, 38828. doi: 10.1038/srep38828 DOI: https://doi.org/10.1038/srep38828

Wagner, M., Lambert, S., 2018. Freshwater Microplastics Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-61615-5

Wagner, M., Scherer, C., Alvarez-Muñoz, D., Brennholt, N., Bourrain, X., Buchinger, S., Fries, E., Grosbois, C., Klasmeier, J., Marti, T., Rodriguez-Mozaz, S., Urbatzka, R., Vethaak, A. D., Winther- Nielsen, M., Reifferscheid, G., 2014. Microplastics in freshwater ecosystems: what we know and what we need to know. Environmental Sciences Europe, 26(1), 12. doi: 10.1186/s12302-014-0012-7 DOI: https://doi.org/10.1186/s12302-014-0012-7

Wu, L. Ning, D., Zhang, B. Li, Y., Zhang, P., Shan, X., Zhang, Q., Brown, M., Li, Z., Van Nostrand, J. D., Ling, F., Xiao, N., Zhang, Y., Vierheilig, J., Wells, G. F., Yang, Y., Deng, Y., Tu, Q., Wang, A., Acevedo, D., Agullo-Barcelo, M., Alvarez, P. J. J., Alvarez-Cohen, L., Andersen, G. L., de Araujo, J. C., Boehnke, K., Bond, P., Bott, C. B., Bovio, P., Brewster, R. K., Bux, F., Cabezas, A., Cabrol, L., Chen, S., Criddle, C. S., Deng, Y., Etchebehere, C., Ford, A., Frigon, D., Gómez, J. S., Griffin, J. S., Gu, A. Z., Habagil, M., Hale, L., Hardeman, S. D., Harmon, M., Horn, H., Hu, Z., Jauffur, S.,

Johnson, D. R., Keller, J., Keucken, A., Kumari, S., Leal, C. D., Lebrun, L. A., Lee, J., Lee, M., Lee, Z. M. P., Li, Y., Li, Z., Li, M., Li, X., Ling, F., Liu, Y., Luthy, R. G., Mendonça-Hagler, L. C., de Menezes, F. G. R., Meyers, A. J., Mohebbi, A., Nielsen, P. H., Ning, D., Oehmen, A., Palmer, A., Parameswaran, P., Park, J., Patsch, D., Reginatto, V., de los Reyes, F. L., Rittmann, B. E., Robles, A. N., Rossetti, S., Shan, X., Sidhu, J., Sloan, W. T., Smith, K., de Sousa, O. V., Stahl, D. A., Stephens, K., Tian, R., Tiedje, J. M., Tooker, N. B., Tu, Q., Van Nostrand, J. D., De los Cobos Vasconcelos, D., Vierheilig, J., Wagner, M., Wakelin, S., Wang, A., Wang, B., Weaver, J. E., Wells, G. F., West, S., Wilmes, P., Woo, S.-G., Wu, L., Wu, J.-H., Wu, L., Xi, C., Xiao, N., Xu, M., Yan, T., Yang, Y., Yang, M., Young, M., Yue, H., Zhang, B., Zhang, P., Zhang, Q., Zhang, Y., Zhang, T., Zhang, Q., Zhang, W., Zhang, Y., Zhou, H., Zhou, J., Wen, X., Curtis, T. P., He, Q., He, Z., Brown, M., Zhang, T., He, Z., Keller, J., Nielsen, P. H., Alvarez, P. J. J., Criddle, C. S., Wagner, M., Tiedje, J. M., He, Q., Curtis, T. P., Stahl, D. A., Alvarez-Cohen, L., Rittmann, B. E., Wen, X., Zhou, J., Global Water Microbiome, C., 2019. Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nature Microbiology, 4(7), 1183-1195. doi: 10.1038/s41564-019-0426-5 DOI: https://doi.org/10.1038/s41564-019-0426-5

Yoo, J.-H., 2018. Review of Disinfection and Sterilization – Back to the Basics. Infection and Chemo- therapy, 50(2), 101-109. doi: doi.org/10.3947/ic.2018.50.2.101 DOI: https://doi.org/10.3947/ic.2018.50.2.101

Downloads

Published

01.07.2020

Issue

Section

Original Research Paper

How to Cite

Matjašič, T., Dreo, T., Samardžija, Z., Bajt, O., Kanduč, T., Simčič, T., & Mori, N. (2020). Preliminary experiments into colonization of microorganisms from activated sludge on different types of plastics. Acta Biologica Slovenica, 63(1), 45-61. https://doi.org/10.14720/abs.63.1.15914