Corylus avellana bark optical properties differ during and out of the vegetation season


  • Mateja Grašič
  • Hrvoje Malkoč
  • Alenka Gaberščik



bark, Corylus avellana, optical properties, pigments, potential photochemical efficiency of photosystem II (Fv/Fm)


We compared different bark traits of the common hazel (Corylus avellana L.) in four different months during the vegetation season (September, November) and out of the vegetation season (January, February) to get an insight into the changes in bark morphological, biochemical, and optical properties. Since bark of woody plants contains a layer of chlorenchyma, which can harvest transmitted light and perform photosynthesis, we also measured bark potential photochemical efficiency of photosystem II. The values of the latter parameter decreased during the research period, ranging from 0.77 in September to 0.22 in February. This could be attributed to low temperatures. The shapes of the bark reflectance curves were similar between the four samplings, with a peak in red and pronounced reflectance in the near-infrared spectrum. However, the level of reflectance differed between the four samplings. Regarding the time of the season, we obtained the most pronounced changes in the green, yellow, and red reflectance spectra. Light reflectance in these regions was positively related with chlorophyll b and carotenoid contents, while it was negatively related with anthocyanins and UV-B–absorbing substances. Transmittance spectra showed less variability between the four samplings. Regarding the studied pigments, the most pronounced changes were obtained for anthocyanin and UV-B–absorbing substances contents, which decreased in accordance with decreasing environmental temperatures. On the contrary, the level of photosynthetic pigments remained high, thus enabling undisturbed primary metabolism.


Alekseev, A. A., Matorin, D. N., Osipov, V. A., Venediktov, P. S., 2007. Investigation of the photosyn- thetic activity of bark phelloderm of arboreous plants using the fluorescent method. Moscow University Biological Sciences Bulletin, 62 (4), 164-170. DOI:

Aschan, G., Wittmann, C., Pfanz, H., 2001. Age-dependent bark photosynthesis of aspen twigs. Trees, 15, 431-437. DOI:

Aschan, G., Pfanz, H., 2003. Non-foliar photosynthesis − a strategy of additional carbon acquisition. Flora, 198 (2), 81-97. DOI:

Barr, M. L., Potter, L. D., 1974. Chlorophylls and carotenoids in aspen bark (Populus tremuloides). The Southwestern Naturalist, 19 (2), 147-154. DOI:

Caldwell, M. M., 1968. Solar ultraviolet radiation as an ecological factor for alpine plants. Ecological Monographs, 38 (3), 243-268. DOI:

Cernusak, L. A., Marshall, J. D., 2000. Photosynthetic refixation in branches of western white pine. DOI:

Functional Ecology, 14 (3), 300-311.

Dale, M. P., Causton, D. R., 1992. Use of the chlorophyll a/b ratio as a bioassay for the light environment of a plant. Functional Ecology, 6 (2), 190-196. DOI:

Drumm, H., Mohr, H., 1978. The mode of interaction between blue (UV) light photoreceptor and phytochrome in anthocyanin formation of the Sorghum seedling. Photochemistry and Photobiology, 27 (2), 241-248. DOI:

Filippou, M., Fasseas, C., Karabourniotis, G., 2007. Photosynthetic characteristics of olive tree (Olea europaea) bark. Tree Physiology, 27 (7), 977-984. DOI:

Germ, M., Mazej, Z., Gaberščik, A., Trošt Sedej, T., 2006. The response of Ceratophyllum demersum L. and Myriophyllum spicatum L. to reduced, ambient, and enhanced ultraviolet-B radiation. Hydrobiologia, 170 (1), 47-51. DOI:

Grašič, M., Škoda, B., Golob, A., Vogel-Mikuš, K., Gaberščik, A., 2019a. Barley and spelt differ in leaf silicon content and other leaf traits. Biologia, 74, 929-939. DOI:

Grašič, M., Piberčnik, M., Zelnik, I., Abram, D., Gaberščik, A., 2019b. Invasive alien vines affect leaf traits of riparian woody vegetation. Water, 11, 2395. DOI:

Grašič, M., Sakovič, T., Abram, D., Vogel-Mikuš, K., Gaberščik, A., 2020. Do soil and leaf silicon content affect leaf functional traits in Deschampsia caespitosa from different habitats? Biologia Plantarum, 64, 234-243. DOI:

Henrion, W., Tributsch, H., 2009. Optical solar energy adaptations and radiative temperature control of green leaves and tree barks. Solar Energy Materials and Solar Cells, 93 (1), 98-107. DOI:

Ivanov, A. G., Krol, M., Sveshnikov, D., Malmberg, G., Gardeström, P., Hurry, V., Oquist, G., Huner, N. P., 2006. Characterization of the photosynthetic apparatus in cortical bark chlorenchyma of Scots pine. Planta, 223, 1165-1177. DOI:

Junker, L. V., Ensminger, I., 2016. Relationship between leaf optical properties, chlorophyll fluorescen- ce and pigment changes in senescing Acer saccharum leaves. Tree Physiology, 36 (6), 694-711. DOI:

Kharouk, V. I., Middleton, E. M., Spencer, S. L., Rock, B. N., Williams, D. L. 1995. Aspen bark photosynthesis and its significance to remote sensing and carbon budget estimate in the boreal ecosystem. Water, Air, and Soil Pollution, 82, 483-497. DOI:

Klančnik, K., Pančić, M., Gaberščik, A., 2014a. Leaf optical properties in amphibious plant species are affected by multiple leaf traits. Hydrobiologia, 737, 121-130. DOI:

Klančnik, K., Vogel-Mikuš, K., Gaberščik, A., 2014b. Silicified structures affect leaf optical properties in grasses and sedge. Journal of Photochemistry and Photobiology B: Biology, 130, 1-10. DOI:

Klančnik, K., Zelnik, I., Gnezda, P., Gaberščik, A., 2015. Do reflectance spectra of different plant stands in wetland indicate species properties? In: Vymazal, J. (ed.): The Role of Natural and Constructed Wetlands in Nutrient Cycling and Retention on the Landscape. Springer, Cham, pp. 73-86. DOI:

Klančnik, K., Levpušček, M., Gaberščik, A., 2016. Variegation and red abaxial epidermis define the leaf optical properties of Cyclamen purpurascens. Flora, 224, 87-95. DOI:

Larcher, W., 2003. Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups, 4th ed. Springer-Verlag, Berlin, 514 pp.

Leong, T.-Y., Anderson, J. M., 1984. Adaptation of the thylakoid membranes of pea chloroplasts to light intensities. I. Study on the distribution of chlorophyll–protein complexes. Photosynthesis Research, 5, 101-115. DOI:

Levizou, E., Petropoulou, Y., Manetas, Y., 2004. Carotenoid composition of peridermal twigs does not fully conform to a shade acclimation hypothesis. Photosynthetica, 42 (4), 591-596. DOI:

Levizou, E., Manetas, Y., 2007. Photosynthetic pigment contents in twigs of 24 woody species assessed by in-vivo reflectance spectroscopy indicate low chlorophyll levels but high carotenoid/ chlorophyll ratios. Environmental and Experimental Botany, 59 (3), 293-298. DOI:

Lev-Yadun, S., Gould, K., 2008. Role of anthocyanins in plant defence. In: Winefield, C., Davies, K., Gould, K. (eds.): Anthocyanins. Springer, New York, pp. 22-28. DOI:

Lichtenthaler, H. K., Buschmann, C., 2001a. Extraction of photosynthetic tissues: chlorophylls and carotenoids. Current Protocols in Food Analytical Chemistry, 1 (1), 165-170.

Lichtenthaler, H. K., Buschmann, C., 2001b. Chlorophylls and carotenoids: measurement and characte- rization by UV-VIS spectroscopy. Current Protocols in Food Analytical Chemistry, 1 (1), 171-178. DOI:

Manetas, Y., Pfanz, H., 2005. Spatial heterogeneity of light penetration through periderm and lenticels and concomitant patchy acclimation of corticular photosynthesis. Trees, 19, 409-414. DOI:

Martin, R. E., Crist, J. B., 1970. Elements of bark structure and terminology. Wood and Fiber Science, 3, 269-279.

Martinčič, A., Wraber, T., Jogan, N., Podobnik, A., Turk, B., Vreš, B., Ravnik, V., Frajman, B., Strgulc Krajšek, S., Trčak, B., Bačič, T., Fischer, M. A., Eler, K., Surina, B., 2007. Mala flora Slovenije. Ključ za določanje praprotnic in semenk, 4th ed. Tehniška založba Slovenije, Ljubljana, 967 pp.

Neill, S., Gould, K., 1999. Optical properties of leaves in relation to anthocyanin concentration and distribution. Canadian Journal of Botany, 77 (12), 1777-1782. DOI:

Pietarinen, S., Willför, S., Ahotupa, M., Hemming, J., Holmbom, B., 2006. Knotwood and bark extracts: strong antioxidants from waste materials. Journal of Wood Science, 2 (5), 436-444. DOI:

Pilarski, J., 1989. Optical properties of bark and leaves of Syringa vulgaris L.. Bulletin of the Polish Academy of Sciences: Biological sciences, 37, 253-269.

Pilarski, P., Tokarz, K., Kocurek, M., 2008. Optical properties of the cork of stems and trunks of beech (Fagus sylvatica L.). Polish Journal of Environmental Studies, 17 (5), 773-779.

Romero, C., 2014. Bark Structure and Functional Ecology. In: Cunningham, A. B., Campbell, B. M., Luckert, M. K. (eds.): Bark: Use, Management, and Commerce in Africa. Advances in Economic Botany, Vol. 17. New York Botanical Garden Press, New York, pp. 5-25.

Rozema, J., Björn, L. O., Bornman, J. F., Gaberščik, A., Hader, D. P., Trošt, T., Germ, M., Klisch, M., Gröniger, A., Sinha, R. P., Lebert, M., He, Y. Y., Buffoni-Hall, R., de Bakker, N. V. J., van de Staaij, J., Meijkamp, B. B., 2002. The role of UV-B radiation in aquatic and terrestrial ecosystems—an experimental and functional analysis of the evolution of UV-absorbing compounds. Journal of Photochemistry and Photobiology B: Biology, 66, 2-12. DOI:

Schreiber, U., Kühl, M., Klimant, I., Reising, H., 1996. Measurement of chlorophyll fluorescence within leaves using a modified PAM fluorometer with a fiber-optic microprobe. Photosynthesis Research, 47, 103-109. DOI:

Sibley, J. L., Ruter, J., Eakes, D. J., 1999. Bark anthocyanin levels differ with location in cultivars of red maple. HortScience, 34 (1), 137-139. DOI:

Solhaug, K., Haugen, J., 1998. Seasonal variation of photoinhibition of photosynthesis in bark from Populus tremula L.. Photosynthetica, 35, 411-417. DOI:

Středa, T., Litschmann, T., Středová, H., 2015. Relationship between tree bark surface temperature and selected meteorological elements. Contributions to Geophysics and Geodesy, 45 (4), 299-311. DOI:

Tausz, M., Warren, C. R., Adams, M. A., 2005. Is the bark of shining gum (Eucalyptus nitens) a sun or a shade leaf? Trees, 19, 415-421. DOI:

Tokarz, K., Pilarski, J., 2005. Optical properties and the content of photosynthetic pigments in the stems and leaves of the apple tree. Acta Physiologiae Plantarum, 27, 183-191. DOI:

Vick, J. K., Young, D. R., 2009. Corticular photosynthesis: a mechanism to enhance shrub expansion in coastal environments. Photosynthetica, 47 (1), 26-32. DOI:

Wittmann, C., Pfanz, H., 2008. General trait relationships in stems: a study on the performance and interrelationships of several functional and structural parameters involved in corticular photosyn- thesis. Physiologia Plantarum, 134 (4), 636-648. DOI:

Wittmann, C., Pfanz, H., Loreto, F., Centritto, M., Pietrini, F., Alessio, G., 2006. Stem CO2 release under illumination: corticular photosynthesis, photorespiration or inhibition of mitochondrial respiration? Plant, Cell and Environment, 29 (6), 1149-1158. DOI:

Wittmann, C., Pfanz, H., 2014. Bark and woody tissue photosynthesis a means to avoid hypoxia or anoxia in developing stem tissues. Functional Plant Biology, 41 (9), 940-953. DOI:






Original Research Paper

How to Cite

Grašič, M., Malkoč, H., & Gaberščik, A. (2020). Corylus avellana bark optical properties differ during and out of the vegetation season. Acta Biologica Slovenica, 63(2), 3-17.

Similar Articles

1-10 of 70

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 > >>