Nicotinic acetylcholine receptor as a pharmacological target in lung cancer


  • Veno Kononenko
  • Tadeja Bele
  • Sara Novak
  • Igor Križaj
  • Damjana Drobne
  • Tom Turk



nAChR, antagonist, apoptosis, lung cancer, nanodelivery system, nicotine


Lung cancer is a widespread form of cancer with a low survival rate. Tobacco smoking is a major risk factor for the development of lung cancer, as tobacco smoke contains many carcinogens. Nicotine, which is not classified as a carcinogen, is the main component of tobacco, responsible for addiction and recent research suggests that nicotine, independent of other tobacco components, may contribute to the development and progression of cancer. Nicotine, as an agonist of nicotinic acetylcholine receptors (nAChRs), promotes cell proliferation, prevents apoptosis, and has an important role in promoting angiogenesis and metastasis of cancer cells. The realisation that nAChRs are involved in the development and progression of lung cancer has raised the idea of using nAChR antagonists that would counteract the adverse effects of nicotine. Currently, there are only a few nAChR antagonists for which anticancer efficacy has been investigated. Many of the known antagonists do not act selectively on nAChR subtypes that are overexpressed in lung cancer cells. Nonselective nAChR antagonists can cause adverse side effects by acting on nAChR subtypes expressed on non-cancerous cells. In order to avoid such side effects, it is necessary to ensure that a given antagonist acts predominantly on cancer cells. This can be achieved by using nano delivery systems that are preferentially uptaken by cancer cells. In this article, we present the latest achievements in the development of drugs for the treatment of lung cancer based on nAChR antagonists delivered to the site of action by nanoparticles.


Anderson, C.F., Grimmett, M.E., Domalewski, C.J., Cui, H., 2020. Inhalable nanotherapeutics to improve treatment efficacy for common lung diseases. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 12 (1), e1586. DOI:

Anselmo, A.C., Mitragotri, S., 2019. Nanoparticles in the clinic: An update. Bioengineering & Tran- slational Medicine, 4 (3), e10143. DOI:

Berne, S., Čemažar, M., Frangež, R., Juntes, P., Kranjc, S., Grandič, M., Savarin, M., Turk, T., 2018. APS8 Delays Tumor Growth in Mice by Inducing Apoptosis of Lung Adenocarcinoma Cells Ex- pressing High Number of α7 Nicotinic Receptors. Marine Drugs, 16 (10), 367. DOI:

Blanco, E., Shen, H., Ferrari, M., 2015. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nature Biotechnology, 33 (9), 941. DOI:

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., Jemal, A., 2018. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countri- es. CA: A Cancer Journal for Clinicians, 68 (6), 394–424. DOI:

Calles, A., Aguado, G., Sandoval, C., Álvarez, R., 2019. The role of immunotherapy in small cell lung cancer. Clinical and Translational Oncology, 21 (8), 961–976. DOI:

Carr, L.L., Jacobson, S., Lynch, D.A., Foreman, M.G., Flenaugh, E.L., Hersh, C.P., Sciurba, F.C., Wilson, D.O., Sieren, J.C., Mulhall, P., Kim, V., 2018. Features of COPD as predictors of lung cancer. Chest, 153 (6), 1326–1335. DOI:

Cattaneo, M.G., Codignola, A., Vicentini, L.M., Clementi, F., Sher, E., 1993. Nicotine stimulates a sero- tonergic autocrine loop in human small-cell lung carcinoma. Cancer Research, 53 (22), 5566–5568.

Chen, J., Cheuk, I.W., Shin, V.Y., Kwong, A., 2019. Acetylcholine receptors: key players in cancer development. Surgical Oncology, 31, 46–53. DOI:

Chernyavsky, A.I., Shchepotin, I.B., Galitovkiy, V., Grando, S.A., 2015. Mechanisms of tumor-promoting activities of nicotine in lung cancer: synergistic effects of cell membrane and mitochondrial nicotinic acetylcholine receptors. BMC Cancer, 15 (1), 152. DOI:

Cho, K., Wang, X.U., Nie, S., Shin, D.M., 2008. Therapeutic nanoparticles for drug delivery in cancer. Clinical Cancer Research, 14 (5), 1310–1316. DOI:

Dasgupta, P., Kinkade, R., Joshi, B., DeCook, C., Haura, E., Chellappan, S., 2006. Nicotine inhibits apoptosis induced by chemotherapeutic drugs by up-regulating XIAP and survivin. Proceedings of the National Academy of Sciences, 103 (16), 6332–6337. DOI:

Doroshow, D.B., Sanmamed, M.F., Hastings, K., Politi, K., Rimm, D.L., Chen, L., Ignacio, M., Kurt, A.S., Herbst, R.S., 2019. Immunotherapy in non–small cell lung cancer: facts and hopes. Clinical Cancer Research, 25 (15), 4592–4602. DOI:

Doroudian, M., Azhdari, M.H., Goodarzi, N., O’Sullivan, D., Donnelly, S.C., 2021. Smart Nanotherapeutics and Lung Cancer. Pharmaceutics, 13 (11), 1972. DOI:

El-Bayoumy, K., Stoner, G., 2022. Use of Freeze-dried Watercress for Detoxification of Carcinogens and Toxicants in Smokers: Implications of the Findings and Potential Opportunities. Cancer Prevention Research, 15 (3), 139–141. DOI:

Ferchmin, P.A., Pagán, O.R., Ulrich, H., Szeto, A.C., Hann, R.M., Eterović, V.A., 2009. Actions of oc-15 tocoral and tobacco cembranoids on nicotinic receptors. Toxicon: official journal of the International Society on Toxinology, 54 (8), 1174–1182. DOI:

Friedman, J.R., Richbart, S.D., Merritt, J.C., Brown, K.C., Nolan, N.A., Akers, A.T., Lau, J.K., Robateau, Z.R., Miles, S.L., Dasgupta, P., 2019. Acetylcholine signaling system in progression of lung cancers. Pharmacology and Therapeutics, 194, 222–254. DOI:

Grando, S.A., 2014. Connections of nicotine to cancer. Nature Reviews Cancer, 14 (6), 419–429. DOI:

Grozio, A., Paleari, L., Catassi, A., Servent, D., Cilli, M., Piccardi, F., Paganuzzi, M., Cesario, A., Granone, P., Mourier, G., Russo, P., 2008. Natural agents targeting the α7‐nicotinic‐receptor in NSCLC: A promising prospective in anti‐cancer drug development. International Journal of Can- DOI:

cer, 122 (8), 1911–1915.

Haywood, A.J., Steidinger, K.A., Truby, E.W., Bergquist, P.R., Bergquist, P.L., Adamson, J., Mackenzie, L., 2004. Comparative morphology and molecular phylogenetic analysis of three new species of the genus karenia (dinophyceae) from New Zealand. Journal of Phycology, 40, 165–179. DOI:

Houssen, W.E., Lu, Z., Edrada-Ebel, R., Chatzi, C., Tucker, S.J., Sepčić, K., Turk, T., Zovko, A., Shen, S., Mancini, I., Scott, R.H., 2010. Chemical synthesis and biological activities of 3-alkyl pyridinium polymeric analogues of marine toxins. Journal of Chemical Biology, 3 (3), 113–125. DOI:

Hu, T., Burton, I.W., Cembella, A.D., Curtis, J.M., Quilliam, M.A., Walter, J.A., Wright, J.L., 2001. Characterization of spirolides a, c, and 13-desmethyl c, new marine toxins isolated from toxic plankton and contaminated shellfish. Journal of Natural Products, 64 (3), 308–312. DOI:

Hurst, R., Rollema, H., Bertrand, D., 2013. Nicotinic acetylcholine receptors: from basic science to therapeutics. Pharmacology & Therapeutics, 137 (1), 22–54. DOI:

Imani, R., Dillert, R., Bahnemann, D.W., Pazoki, M., Apih, T., Kononenko, V., Repar, N., Kralj‐Iglič, V., Boschloo, G., Drobne, D., Edvinsson, T., 2017. Multifunctional Gadolinium‐Doped Mesoporous TiO2 Nanobeads: Photoluminescence, Enhanced Spin Relaxation, and Reactive Oxygen Species Photogeneration, Beneficial for Cancer Diagnosis and Treatment. Small, 13 (20), 1700349. DOI:

Jennings, K.R., Brown, D.G., Wright, D.P., 1986. Methyllycaconitine, a naturally occurring insecticide with a high affinity for the insect cholinergic receptor. Experientia, 42, 611–613. DOI:

Jull, B., Plummer III, H.K., Schuller, H., 2001. Nicotinic receptor-mediated activation by the tobacco- specific nitrosamine NNK of a Raf-1/MAP kinase pathway, resulting in phosphorylation of c-myc in human small cell lung carcinoma cells and pulmonary neuroendocrine cells. Journal of Cancer Research and Clinical Oncology, 127 (12), 707–717. DOI:

Kawai, H., Berg, D.K., 2001. Nicotinic acetylcholine receptors containing the α7 subunits on rat cor- tical neurons do not undergo long lasting inactivation even when upregulated by chronic nicotine exposure. Journal of Neurochemistry, 78 (6), 1367–1378. DOI:

Kononenko, V., Narat, M., Drobne, D., 2015. Nanoparticle interaction with the immune system. Arhiv za Higijenu Rada i Toksikologiju, 66 (2), 97–108. DOI:

Kononenko, V., Erman, A., Petan, T., Križaj, I., Kralj, S., Makovec, D., Drobne, D., 2017a. Harmful at non-cytotoxic concentrations: SiO2-SPIONs affect surfactant metabolism and lamellar body bioge- nesis in A549 human alveolar epithelial cells. Nanotoxicology, 11 (3), 419–429. DOI:

Kononenko, V., Imani, R., Repar, N., Benčina, M., Lorenzetti, M., Erman, A., Drobne, D., Iglič, A., 2017b. Phototoxicity of Mesoporous TiO2+ Gd Microbeads With Theranostic Potential. In: Advances in Biomembranes and Lipid Self-Assembly, Academic Press, 26, 153–171. DOI:

Koss, D.J., Hindley, K.P., David, K.C., Mancini, I., Guella, G., Sepčić, K., Turk, T., Rebolj, K., Riedel, G., Platt, B., Scott, R.H., 2007. A comparative study of the actions of alkylpyridinium salts from a marine sponge and related synthetic compounds in rat cultured hippocampal neurones. BMC Pharmacology, 7 (1), 1. DOI:

Liu, Q., Yu, K.W., Chang, Y.C., Lukas, R.J., Wu, J., 2008. Agonist-induced hump current production in heterologously-expressed human alpha4beta2-nicotinic acetylcholine receptors. Acta Pharma- cologica Sinica, 29 (3), 305–319. DOI:

Kononenko et al.: Nikotinski acetilholinski receptor in pljučni rak

Lucky, S.S., Soo, K.C., Zhang, Y., 2015. Nanoparticles in photodynamic therapy. Chemical Reviews, 115 (4), 1990-2042. DOI:

Maneckjee, R., Minna, J.D., 1990. Opioid and nicotine receptors affect growth regulation of human lung cancer cell lines. Proceedings of the National Academy of Sciences, 87 (9), 3294–3298. DOI:

Mao, Y., Yang, D., He, J., Krasna, M.J., 2016. Epidemiology of lung cancer. Surgical Oncology Clinics, 25 (3), 439–445. DOI:

Marques, P., Piqueras, L., Sanz, M.J., 2021. An updated overview of e-cigarette impact on human health. Respiratory Research, 22, 1–14. DOI:

Mucchietto, V., Crespi, A., Fasoli, F., Clementi, F., Gotti, C., 2016. Neuronal acetylcholine nicotinic receptors as new targets for lung cancer treatment. Current Pharmaceutical Design, 22 (14), 2160–2169. DOI:

Mucchietto, V., Fasoli, F., Pucci, S., Moretti, M., Benfante, R., Maroli, A., Di Lascio, S., Bolchi, C., Pallavicini, M., Dowell, C., McIntosh, M., 2018. α9‐and α7‐containing receptors mediate the pro‐proliferative effects of nicotine in the A549 adenocarcinoma cell line. British Journal of Phar- DOI:

macology, 175 (11), 1957–1972. DOI:

Murthy, S.K., 2007. Nanoparticles in modern medicine: state of the art and future challenges. International Journal of Nanomedicine, 2 (2), 129.

Onkološki inštitut Ljubljana, Rak pljuč, (4. 4. 2022)

Paleari, L., Negri, E., Catassi, A., Cilli, M., Servent, D., D‘Angelillo, R., Cesario, A., Russo, P., Fini, M., 2009a. Inhibition of nonneuronal α7-nicotinic receptor for lung cancer treatment. American Journal of Respiratory and Critical Care Medicine, 179 (12), 1141–1150. DOI:

Paleari, L., Cesario, A., Fini, M., Russo, P., 2009b. Foundation review: α7-nicotinic receptor anta- gonists at the beginning of a clinical era for NSCLC and mesothelioma? Drug Discovery Today, 14, 822–836. DOI:

Paranjpe, M., Müller-Goymann, C., 2014. Nanoparticle-mediated pulmonary drug delivery: a review. International Journal of Molecular Sciences, 15 (4), 5852–5873. DOI:

Picciotto, M.R., Kenny, P.J., 2021. Mechanisms of nicotine addiction. Cold Spring Harbor Perspectives in Medicine, 11 (5), a039610. DOI:

Ren, J., Zhu, X., Xu, P., Li, R., Fu, Y., Dong, S., Zhangsun, D., Wu, Y., Luo, S., 2019. d-Amino Acid Substitution of α-Conotoxin RgIA Identifies its Critical Residues and Improves the Enzymatic Stability. Marine Drugs, 17 (3), 142. DOI:

Riley, R.S., June, C.H., Langer, R., Mitchell, M.J., 2019. Delivery technologies for cancer immuno-therapy. Nature reviews Drug Discovery, 18 (3), 175–196. DOI:

Sadhukha, T., Wiedmann, T.S., Panyam, J., 2013. Inhalable magnetic nanoparticles for targeted hyper-thermia in lung cancer therapy. Biomaterials, 34 (21), 5163–5171. DOI:

Samson, A.O., Levitt, M., 2008. Inhibition mechanism of the acetylcholine receptor by alpha-neurotoxins as revealed by normal-mode dynamics“. Biochemistry, 47 (13), 4065–70. DOI:

Sanner, T., Grimsrud, T.K., 2015. Nicotine: carcinogenicity and effects on response to cancer treatment–a review. Frontiers in Oncology, 5, 196. DOI:

Schuller, H.M., 1989. Cell type specific, receptor-mediated modulation of growth kinetics in human lung cancer cell lines by nicotine and tobacco-related nitrosamines. Biochemical Pharmacology, 38 (20), 3439–3442. DOI:

Schuller, H.M., 2007. Nitrosamines as nicotinic receptor ligands. Life sciences, 80 (24-25), 2274–2280. Schuller, H.M., Al-Wadei, H.A., Majidi, M., 2008. Gamma aminobutyric acid, a potential tumor suppressor for small airway-derived lung adenocarcinoma. Carcinogenesis, 29 (10), 1979–1985. Schuller, H.M., 2009. Is cancer triggered by altered signalling of nicotinic acetylcholine receptors?. Nature Reviews Cancer, 9 (3), 195. DOI:

Schuller, H.M., 2019. The impact of smoking and the influence of other factors on lung cancer. Expert Review of Respiratory Medicine, 13 (8), 761–769. DOI:

Sepčić, K., Guella, G., Mancini, I., Pietra, F., Serra, M.D., Menestrina, G., Tubbs, K., Maček, P., Turk, T. (1997). Characterization of anticholinesterase-active 3-alkyl pyridinium polymers from the marine sponge Reniera sarai in aqueous solutions. Journal of Natural Products, 60 (10), 991–996 DOI:

Shen, A.M., Minko, T., 2020. Pharmacokinetics of inhaled nanotherapeutics for pulmonary delivery. Journal of Controlled Release, 326, 222–244. DOI:

Shiraishi, K., Kunitoh, H., Daigo, Y., Takahashi, A., Goto, K., Sakamoto, H., Ohnami, S., Shimada, Y., Ashikawa, K., Saito, A., Watanabe, S.I., 2012. A genome-wide association study identifies two new susceptibility loci for lung adenocarcinoma in the Japanese population. Nature Genetics, 44 (8), 900. DOI:

Siemann, D.W., 2011. The unique characteristics of tumor vasculature and preclinical evidence for its selective disruption by tumor-vascular disrupting agents. Cancer Treatment Reviews, 37 (1), 63–74. Skok, M., Gergalova, G., Lykhmus, O., Kalashnyk, O., Koval, L., Uspenska, K., 2016. Nicotinic acetylcholine receptors in mitochondria: subunit composition, function and signaling. Neurotransmitter, 3, e1290 DOI:

Thandra, K.C., Barsouk, A., Saginala, K., Aluru, J.S., Barsouk, A., 2021. Epidemiology of lung cancer. Contemporary Oncology, 25 (1), 45. DOI:

Turk, T., Frangež, R., Sepčić, K., 2007. Mechanisms of toxicity of 3-alkyl pyridinium polymers from marine sponge Reniera sarai. Marine Drugs, 5, 157–167. DOI:

Turk, T., Sepčić, K., Mancini, I., Guella, G., 2008. 3-Akylpyridinium and 3-alkylpyridine compounds from marine sponges, their synthesis, biological activities and potential use. In: Studies in Natural Products Chemistry, Elsevier, 35, 355–397. DOI:

Utkin, Y.N., 2013. Three-finger toxins, a deadly weapon of elapid venom–milestones of discovery. Toxicon, 62, 50–55. DOI:

Vulfius, C.A., Kasheverov, I.E., Starkov, V.G., Osipov, A.V., Andreeva, T.V., Filkin, S.Y., Gorbacheva, E.V., Astashev, M.E., Tsetlin, V.I., Utkin, Y.N., 2014. Inhibition of nicotinic acetylcholine receptors, a novel facet in the pleiotropic activities of snake venom phospholipases A2. PloS One, 9 (12), e115428. DOI:

Wang, S., Hu, Y., 2018. α7 nicotinic acetylcholine receptors in lung cancer. Oncology Letters, 16 (2), 1375–1382. DOI:

Wessler, I., Kirkpatrick, C.J., 2008. Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans. British Journal of Pharmacology, 154 (8), 1558–1571. DOI:

Whiteaker, P., Christensen, S., Yoshikami, D., Dowell, C., Watkins, M., Gulyas, J., Rivier, J., Olivera, B.M., McIntosh, J.M., 2007. Discovery, synthesis, and structure activity of a highly selective alpha7 nicotinic acetylcholine receptor antagonist. Biochemistry, 46 (22), 6628–6638. DOI:

Wintersteiner, O., Dutcher, J.D., 1943. Curare alkaloids from Chondodendron tometosum. Science, 97, 467–470. DOI:

Wittenberg, R.E., Wolfman, S.L., De Biasi, M., Dani, J.A., 2020. Nicotinic acetylcholine receptors and nicotine addiction: A brief introduction. Neuropharmacology, 177, 108256. DOI:

Wolfram, J., Ferrari, M., 2019. Clinical cancer nanomedicine. Nano Today, 25, 85–98. DOI:

Ye, D., Li, Y., Gu, N., 2018. Magnetic labeling of natural lipid encapsulations with iron-based nanoparticles. Nano Research, 11 (6), 2970–2991. DOI:

Zhu, X., Pan, S., Xu, M., Zhang, L., Yu, J., Yu, J., Wu, Y., Fan, Y., Li, H., Kasheverov, I.E., Kudryavtsev, D.S., Tsetlin, V.I., Xue, Y., Zhangsun, D., Wang, X., Luo, S., 2020. High Selectivity of an α-Conotoxin LvIA Analogue for α3β2 Nicotinic Acetylcholine Receptors Is Mediated by β2 Functionally Important Residues. Journal of Medicinal Chemistry, 63 (22), 13656–13668. DOI:

Zovko, A., Viktorsson, K., Lewensohn, R., Kološa, K., Filipič, M., Xing, H., Kem, W.R., Paleari, L., Turk, T., 2013. APS8, a polymeric alkylpyridinium salt blocks α7 nAChR and induces apoptosis in non-small cell lung carcinoma. Marine Drugs, 11 (7), 2574–2594. DOI:




How to Cite

Kononenko, V., Bele, T., Novak, S., Križaj, I., Drobne, D., & Turk, T. (2022). Nicotinic acetylcholine receptor as a pharmacological target in lung cancer. Acta Biologica Slovenica, 65(1), 5-17.

Similar Articles

1-10 of 45

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)