Molecular characterization of Escherichia coli from dishwasher rubber seals


  • Marjanca Starčič Erjavec
  • Jerneja Ambrožič Avguštin



E. coli, dishwasher, genes, One Health, plasmids, virulence


In this study 35 Escherichia coli isolates obtained from sampled dishwashers rubber seals were analysed with polymerase chain reactions (PCR) using specific primers for phylogenetic group, multilocus sequence type (MLST) determination the presence of 43 virulence-associated genes (VAGs) linked with intestinal and extraintestinal E. coli infections and the presence of some typical E. coli virulence plasmids’ sequences in order to assess their virulence potential and/or specific genes, associated with the adaption to a specific environment. It was found that all of the 35 E. coli isolates belonged to the commensal non-pathogenic phylogenetic group A and that the diversity of these E. coli isolates, according to MLST analysis, was relatively low. Further, the prevalence of virulence-associated genes among the dishwasher rubber seal E. coli isolates was also low. Only the following VAGs were detected: fimH, crl, fluA, picU, irp, fyuA, sitA, aslA. Of the five plasmid replication regions tested only RepFIA and RepFIIA were detected. The two sequences associated with conjugative plasmids namely traJ and traT, were detected in only one isolate. Based on the obtained results the studied isolates can be designated as commensal E. coli with low pathogenic potential. Due to the low diversity of sequence types, even among isolates obtained from dishwashers from different locations, there is a possibility that strains from certain clonal groups are more adapted to specific habitats outside warm-blooded hosts than strains of other sequence types.


Abreu, A.G., Fraga, T.R., Granados Martínez, A.P., Kondo, M.Y., Juliano, M.A., Juliano, L., Navarro-Garcia, F., Isaac, L., Barbosa, A.S., Elias, W.P., 2015. The serine protease Pic from enteroaggregative Escherichia coli mediates immune evasion by the direct cleavage of complement. The Journal of Infectious Diseases, 212, 106-115. DOI:

Allocati, N., Masulli, M., Alexeyev, M.F., Di Ilio, C., 2013. Escherichia coli in Europe: an overview. International Journal of Environmental Research and Public Health, 10(12), 6235-6254. DOI:

Bhullar, K., Zarepour, M., Yu, H., Yang, H., Croxen, M., Stahl, M., Finlay, B.B., Turvey, S.E., Vallance, B.A., 2015. The serine protease autotransporter Pic modulates Citrobacter rodentium pathogenesis and its innate recognition by the host. Infection and Immunity, 83, 2636-2650. DOI:

Carattoli, A., Bertini, A., Villa, L., Falbo, V., Hopkins, K.L., Threlfall, E.J., 2005. Identification of plasmids by PCR-based replicon typing. Journal of Microbiological Methods, 63, 219-228. DOI:

Chaudhuri, R.R., Henderson, I.R., 2012. The evolution of the Escherichia coli phylogeny. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 12(2), 214-226. DOI:

Clermont, O., Bonacorsi, S., Bingen, E., 2000. Rapid and simple determination of the Escherichia coli phylogenetic group. Applied and Environmental Microbiology, 66, 4555-4558. DOI:

Clermont, O., Christenson, J.K., Denamur, E., Gordon, D.M., 2013. The Clermont Escherichia coli phylo-typing method revisited: improvement of specificity and detection of new phylo-groups. Environmental Microbiology Reports, 5, 58-65. DOI:

Čurová, K., Slebodníková, R., Kmeťová, M., Hrabovský, V., Maruniak, M., Liptáková, E., Siegfried, L., 2020. Virulence, phylogenetic background and antimicrobial resistance in Escherichia coli associated with extraintestinal infections. Journal of Infection and Public Health, 13(10), 1537-1543. DOI:

Dozois, C.M., Fairbrother, J.M., Harel, J., Bossé, M., 1992. Pap-and pil-related DNA sequences and other virulence determinants associated with Escherichia coli isolated from septicemic chickens and turkeys. Infection and Immunity, 60, 2648-2656. DOI:

Escobar-Páramo, P., Le Menac’h, A., Le Gall, T., Amorin, C., Gouriou, S., Picard, B., Skurnik, D., Denamur E., 2006. Identification of forces shaping the commensal Escherichia coli genetic structure by comparing animal and human isolates. Environmental Microbiology, 11, 1975-1984. DOI:

Ewers, C., Li, G., Wilking, H., Kiessling, S., Alt, K., Antáo, E.M., Laturnus, C., Diehl, I., Glodde, S., Home- ier, T., Böhnke, U., Steinrück, H., Philipp, H.C., Wieler. L.H., 2007. Avian pathogenic, uropathogenic, and newborn meningitis-causing Escherichia coli: how closely related are they? International Journal of Medical Microbiology : IJMM, 297, 163-176. DOI:

Hoffman, J., Badger, J.L., Zhang, Y., Huang, S., Kim, K.S., 2000. Escherichia coli K1 aslA contributes to invasion of brain microvascular endothelial cells in vitro and in vivo. Infection and Immunity, 68, 5062-5067. DOI:

Jang, J., Hur, H.G., Sadowsky, M.J., Byappanahalli, M.N., Yan, T., Ishii, S., 2017. Environmental Escherichia coli: ecology and public health implications-a review. Journal of Applied Microbiology, 123(3), 570-581. DOI:

Janβen, T., Schwarz, C., Preikschat, P., Voss, M., Phillip, H.C., Wieler, L.H., 2001. Virulence associated genes in avian pathogenic Escherichia coli (APEC) isolated from internal organs of poultry having died from colibacillosis. International Journal of Medical Microbiology: IJMM, 291, 371-378. DOI:

Johnson, J.R., Stell, A.L., 2000. Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. The Journal of Infectious Diseases, 181, 261-272. DOI:

Kaper, J.B., Nataro, J.P., Mobley, H.L., 2004. Pathogenic Escherichia coli. Nature reviews. Microbiology, 2(2), 123-140. DOI:

Maurer, J.J., Brown, T.P., Steffens, W.L., Thayer, S.G., 1998. The occurrence of ambient temperature-regulated adhesins, curli, and the temperature-sensitive hemagglutinin tsh among avian Escherichia coli. Avian Diseases, 42, 106-118. DOI:

Miao, L., Li, H., Ding, W., Lu, S., Pan, S., Guo, X., Zhou, X., Wang, D., 2022. Research priorities on One Health: A bibliometric analysis. Frontiers in Public Health, 10, 889854. DOI:

Parham, N.J., Pollard, S.J., Chaudhuri, R.R., Beatson, S.A., Desvaux, M., Russell, M.A., Ruiz, J., Fivian, A., Vila, J., Henderson, I.R., 2005. Prevalence of pathogenicity island IICFT073 genes among extraintestinal clinical isolates of Escherichia coli. Journal of Clinical Microbiology, 43, 2425-2434. DOI:

Paton, A.W., Paton, J.C., 1998. Detection and characterization of Shiga toxigenic Escherichia coli by using multiplex PCR assays for stx1, stx2, eaeA, enterohemorrhagic E. coli hlyA, rfbO111, and rfbO157. Journal of Clinical Microbiology, 36, 598-602. DOI:

Pratt, L.A., Kolter, R., 1999. Genetic analyses of bacterial biofilm formation. Current Opinion in Microbiology, 2, 598-603. DOI:

Restieri, C., Garriss, G., Locas, M.C., Dozois, C.M., 2007. Autotransporter-encoding sequences are phylogenetically distributed among Escherichia coli clinical isolates and reference strains. Applied and Environmental Microbiology, 73, 1553-1562. DOI:

Ruiz, J., Simon, K., Horcajada, J.P., Velasco, M., Barranco, M., Roig, G., Moreno-Martínez, A., Martínez,

J.A., Jiménez de Anta, T., Mensa, J., Vila, J., 2002. Differences in virulence factors among clinical isolates of Escherichia coli causing cystitis and pyelonephritis in women and prostatitis in men. Journal of Clinical Microbiology, 40, 4445-4449. DOI:

Runyen-Janecky, L.J., Reeves, S.A., Gonzales, E.G., Payne, S.M., 2003. Contribution of the Shigella flexneri Sit, Iuc, and Feo iron acquisition systems to iron acquisition in vitro and in cultured cells. Infection and Immunity, 71, 1919-1928. DOI:

Schubert, S., Rakin, A., Karch, H., Carniel, E., Heesemann, J., 1998. Prevalence of the „high-pathogenicity island“ of Yersinia species among Escherichia coli strains that are pathogenic to humans. Infection and Immunity, 66, 480-485. DOI:

Sobecky, P.A., Mincer, T.J., Chang, M.C., Helinski, D.R., 1997. Plasmids isolated from marine sediment microbial communities contain replication and incompatibility regions unrelated to those of known plasmid groups. Applied and Environmental Microbiology, 63, 888-895. DOI:

Starčič, M., Žgur-Bertok, D., Jordi, B.J., Wösten, M.M., Gaastra, W., van Putten, J.P., 2003. The cyclic AMP-cyclic AMP receptor protein complex regulates activity of the traJ promoter of the Escherichia coli conjugative plasmid pRK100. Journal of Bacteriology, 185, 1616-1623. DOI:

Starčič Erjavec, M., Gaastra, W., van Putten, J., Žgur-Bertok, D., 2003. Identification of the origin of replications and partial characterization of plasmid pRK100. Plasmid, 50, 102-112. DOI:

Starčič Erjavec, M., Žgur-Bertok, D., 2015. Virulence potential for extraintestinal infections among commensal Escherichia coli isolated from healthy humans-the Trojan horse within our gut. FEMS Microbiology Letters, 362(5), fnu061. DOI:

Stoppe, N.C., Silva, J.S., Carlos, C., Sato, M.I.Z., Saraiva, A.M., Ottoboni, L.M.M., Torres, T.T., 2017. Worldwide phylogenetic group patterns of Escherichia coli from commensal human and wastewater treatment plant isolates. Frontiers in Microbiology, 8, 2512. DOI:

Tenaillon, O., Skurnik, D., Picard, B., Denamur, E., 2010. The population genetics of commensal Escherichia coli. Nature Reviews. Microbiology, 8, 207-217. DOI:

Tóth, I., Hérault, F., Beutin, L., Oswald E., 2003. Production of cytolethal distending toxins by pathogenic Escherichia coli strains isolated from human and animal sources: establishment of the existence of a new cdt variant (Type IV). Journal of Clinical Microbiology, 41, 4285-4291. DOI:

Vidal, M., Kruger, E., Durán, C., Lagos, R., Levine, M., Prado, V., Toro, C., Vidal, R., 2005. Single multiplex PCR assay to identify simultaneously the six categories of diarrheagenic Escherichia coli associated with enteric infections. Journal of Clinical Microbiology, 43, 5362-5365. DOI:

Vila, J., Vargas, M., Henderson, I.R., Gascón, J., Nataro, J.P., 2000. Enteroaggregative Escherichia coli virulence factors in traveler‘s diarrhea strains. The Journal of Infectious Diseases, 182, 1780-1783. DOI:

Watt, S., Lanotte, P., Mereghetti, L., Moulin-Schouleur, M., Picard, B., Quentin, R., 2003. Escherichia coli strains from pregnant women and neonates: intraspecies genetic distribution and prevalence of virulence factors. Journal of Clinical Microbiology, 41, 1929-1935. DOI:

Wirth, T., Falush, D., Lan, R., Colles, F., Mensa, P., Wieler, L.H., Karch, H., Reeves, P.R., Maiden, M.C., Ochman, H., Achtman, M., 2006. Sex and virulence in Escherichia coli: an evolutionary perspective. Molecular Microbiology, 60, 1136-1151. DOI:

Yamamoto, S., Terai, A., Yuri, K., Kurazono, H., Takeda, Y., Yoshida, O., 1995. Detection of urovirulence factors in Escherichia coli by multiplex polymerase chain reaction. FEMS Immunology and Medical Microbiology, 12, 85-90. DOI:

Yamamoto, T., Echeverria, P., 1996. Detection of the enteroaggregative Escherichia coli heat-stable enterotoxin 1 gene sequences in enterotoxigenic E. coli strains pathogenic for humans. Infection and Immunity, 64, 1441-1445. DOI:

Zude, I., Leimbach, A., Dobrindt, U., 2013. Prevalence of autotransporters in Escherichia coli: what is the impact of phylogeny and pathotype? International Journal of Medical Microbiology: IJMM, 304, 243-256. Zupančič, J., Turk, M., Črnigoj, M., Ambrožič Avguštin, J., Gunde-Cimerman, N., 2019. The dishwasher E. coli from dishwasher rubber seals rubber seal acts as a reservoir of bacteria in the home environment. BMC Microbiology, 19(1), 300. DOI:






Original Research Paper

How to Cite

Starčič Erjavec, M., & Ambrožič Avguštin, J. (2022). Molecular characterization of Escherichia coli from dishwasher rubber seals. Acta Biologica Slovenica, 65(1), 18-27.

Similar Articles

1-10 of 35

You may also start an advanced similarity search for this article.