Strigolactones – signal molecules in arbuscular mycorrhiza and regulators of plant growth and development


  • Benjamin Justin
  • Dominik Vodnik



symbiosis, development, apical dominance, auxin transport


Strigolactones were first discovered as rhizosphere signals by which parasitic weeds detect the presence of a host plant species. It was later recognized that they play a critical role in facilitating the formation of arbuscular mycorrhiza (AM), symbiosis with fungi, crucial for the acquisition of plant nutrients in over 80% of land plant species. Recently, strigolactones have also been shown to participate in regulation of several plant developmental processes. They are involved in the control of apical dominance (shoot branching), root development, nodulation, etc.. The paper presents the role of strigolactones in development of AM and their implication in other physiological processes. It discusses a possible role of strigolactones as integrators of the root-to-shoot balance, nutrient acquisition, and resource allocation.


Akiyama, K., 2007. Chemical identification and functional analysis of apocarotenoids involved in the development of arbuscular mycorrhizal symbiosis. Bioscience, Biotechnology and Biochemistry, 71, 1405–1414. DOI:

Akiyama, K., Matsuzaki, K., Hayashi, H., 2005. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature, 435, 824–827. DOI:

Anh-Tuan, P., Kwang-Kim, J., Hoon-Kim, H., Young-Lee, S., Il-Park, N., Un-Park, S., 2011. Carotenoid accumulation and characterization of cDNAs encoding phytoene synthase and phytoene desaturase in garlic (Allium sativum). Journal of Agriculture and Food Chemistry, 59, 5412–5417. DOI:

Awad, A. A., Sato, D., Kusumoto, D., Kamioka, H., Takeuchi, Y., Yoneyama, K. 2006. Characterization of strigolactones, germination stimulants for the root parasitic plants Striga and Orobanche, produced by maize, millet and sorghum. Plant Growth Regulation, 48, 221–227.

Bécard, G., Taylor, L., Douds, D., Pfeffer, P., Doner, L. 1995. Flavovoids are not necessary plant signal compounds in arbuscular mycorrhizal symbioses. Molecular Plant-Microbe Interactions, 8, 252–258. DOI:

Bennett, T., Sieberer, T., Willett, B., Booker, J., Luschnig, C., Leyser, O. 2006. The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport. Current Biology, 16, 553–563. DOI:

Besserer, A., Puech-Pagés, V., Kiefer, P., Gomez-Roldan, V., Jauneau, A. in sod. 2006. Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biology, 4, 1239–1247. DOI:

Bonneau, L., Huguet, S., Wipf, D., Pauly, N., Truong, H. N. 2013. Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula. New Phytologist, 199, 188–202. DOI:

Crawford, S., Shinohara, N., Sieberer, T., Williamson, L., George, G., Hepworth, J., Müller, D., Domagalska, M. A., Leyser, O. 2010. Strigolactones enhance competition between shoot branches by dampening auxin transport. Developement, 137, 2905–2913. DOI:

Domagalska, M. A., Leyser, O., 2011. Signal integration in the control of shoot branching. Nature reviews; molecular cell biology, 12, 211–221. DOI:

Foo, E., Reid, J. B., 2013. Strigolactones: New Physiological Roles for an Ancient Signal. Journal of Plant Growth Regulation, 32, 429–442. DOI:

Gogala, N., 1991. Regulation of mycorrhizal infection by hormonal factors produced by hosts and fungi. Experientia, 47, 331–340. DOI:

Gomez-Roldan, V., Fermas, S., Brewer, P. B., Puech-Pagés, V., Dun, E. A. in sod. 2008. Strigolactone inhibition of shoot branching. Nature, 455, 189–195. DOI:

Maier, W., Hammer, K., Dammann, U., Schulz, B., Strack, D., 1996. Accumulation of sesquiterpenoid cycloheksenone derivatives induced by an arbuscular mycorrhizal fungus in members of the Poaceae. Planta, 202, 36–42. DOI:

Matusova, R., Rani, K., Verstappen, F., Franssen, M., Beale, M., Bouwmeester, H., 2005. The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiology, 139, 920–934. DOI:

Nordström, A., Tarkowski, P., Tarkowska, D., Norbaek, R., Astot, C., Dolezal, K., Sandberg, G., 2004. Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: A factor of potential importance for auxin-cytokinin-regulated development. PNAS, 101, 8039–8044. DOI:

Parniske, M., 2008. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature reviews; microbiology, 6, 763–775. DOI:

Petrášek, J., Mravec, J., Bouchard, R., Blakeslee, J. J., Abas, M., Seifertová, D., Wiśniewska, J., Tadele, Z., Kubeš, M., Čovanová, M., Dhonukshe, P., Skůpa, P., Benková, E., Perry, L., Křeček P., Lee, O. R., Fink, G. R., Geisler, M., Murphy, A. S., Luschnig, C., Zažímalová, E., Friml, J. 2006.

PIN Proteins Perform a Rate-Limiting Function in Cellular Auxin Efflux. Science, 312, 914–918. DOI:

Proust, H., Hoffmann, B., Xie, X., Yoneyama, K., Schaefer, G. D., Yoneyama Koichi, Nogue, F., Rameau, C., 2011. Strigolactones regulate protonema branching and act as a quorum sensing-like signal in the moss Physcomitrella patens. Developement, 138, 1531–1539. DOI:

Prusinkiewicz, P., Crawford, S., Smith, R. S., Ljung, K., Bennett, T., Ongaro, V., Leyser, O., 2009. Control of bud activation by an auxin transport switch. PNAS, 106,17431–17436. DOI:

Rochange, S., 2010. Strigolactones and their role in arbuscular mycorrhizal symbiosis. V: Arbuscular mycorrhizas: Physiology and function. Koltai, H., Kapulnik, Y., New York, Springer: 323 str. DOI:

Strack, D., Fester, T., 2006. Isoprenoid metabolism and plastid reorganization in arbuscular mycorrhizal roots. New Phytologist, 172, 22–34. DOI:

Taiz, L., Zeiger, E., 2006. Plant Physiology. 4. izdaja. Sinauer Associates, Massachusetts, 764 str.

Tamasloukht, B., Sejalon-Delmas, N., Kluever, A., Jauneau, A., Roux, C., Bécard, G., Franken, P., 2003. Root factor induce mitochondrial-related gene expression and fungal respiration during the developmental switch from asymbiosis to presymbiosis in the arbuscular mycorrhizal fungus Gigaspora rosea. Plant Physiology, 131, 1468–1478. DOI:

Tanaka, M., Takei, K., Kojima, M., Sakakibara, H., Mori, H., 2006. Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. The Plant Journal, 45, 1028–1036. DOI:

Umehara, M., Hanada, A., Yoshida, S., Akiyama, K., Arite, T. in sod., 2008. Inhibition of shoot branching by new terpenoid plant hormones. Nature, 455, 195–201. DOI:

Xie, X., Yoneyama, K., Yoneyama, K. 2010. The strigolactone story. Annual Review of Phytopathology, 48, 93–117. DOI:

Yoneyama, K., Xie, X., Sekimoto, H., Takeuchi, Y.,Ogasawara, S. in sod., 2008. Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants. New Phytologist, 179, 484–494. DOI:






Original Research Paper

How to Cite

Justin, B., & Vodnik, D. (2013). Strigolactones – signal molecules in arbuscular mycorrhiza and regulators of plant growth and development. Acta Biologica Slovenica, 56(2), 22-33.

Similar Articles

1-10 of 47

You may also start an advanced similarity search for this article.