Strigolactones – signal molecules in arbuscular mycorrhiza and regulators of plant growth and development
DOI:
https://doi.org/10.14720/abs.56.2.16123Keywords:
symbiosis, development, apical dominance, auxin transportAbstract
Strigolactones were first discovered as rhizosphere signals by which parasitic weeds detect the presence of a host plant species. It was later recognized that they play a critical role in facilitating the formation of arbuscular mycorrhiza (AM), symbiosis with fungi, crucial for the acquisition of plant nutrients in over 80% of land plant species. Recently, strigolactones have also been shown to participate in regulation of several plant developmental processes. They are involved in the control of apical dominance (shoot branching), root development, nodulation, etc.. The paper presents the role of strigolactones in development of AM and their implication in other physiological processes. It discusses a possible role of strigolactones as integrators of the root-to-shoot balance, nutrient acquisition, and resource allocation.
References
Akiyama, K., 2007. Chemical identification and functional analysis of apocarotenoids involved in the development of arbuscular mycorrhizal symbiosis. Bioscience, Biotechnology and Biochemistry, 71, 1405–1414. DOI: https://doi.org/10.1271/bbb.70023
Akiyama, K., Matsuzaki, K., Hayashi, H., 2005. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature, 435, 824–827. DOI: https://doi.org/10.1038/nature03608
Anh-Tuan, P., Kwang-Kim, J., Hoon-Kim, H., Young-Lee, S., Il-Park, N., Un-Park, S., 2011. Carotenoid accumulation and characterization of cDNAs encoding phytoene synthase and phytoene desaturase in garlic (Allium sativum). Journal of Agriculture and Food Chemistry, 59, 5412–5417. DOI: https://doi.org/10.1021/jf2009827
Awad, A. A., Sato, D., Kusumoto, D., Kamioka, H., Takeuchi, Y., Yoneyama, K. 2006. Characterization of strigolactones, germination stimulants for the root parasitic plants Striga and Orobanche, produced by maize, millet and sorghum. Plant Growth Regulation, 48, 221–227.
Bécard, G., Taylor, L., Douds, D., Pfeffer, P., Doner, L. 1995. Flavovoids are not necessary plant signal compounds in arbuscular mycorrhizal symbioses. Molecular Plant-Microbe Interactions, 8, 252–258. DOI: https://doi.org/10.1094/MPMI-8-0252
Bennett, T., Sieberer, T., Willett, B., Booker, J., Luschnig, C., Leyser, O. 2006. The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport. Current Biology, 16, 553–563. DOI: https://doi.org/10.1016/j.cub.2006.01.058
Besserer, A., Puech-Pagés, V., Kiefer, P., Gomez-Roldan, V., Jauneau, A. in sod. 2006. Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biology, 4, 1239–1247. DOI: https://doi.org/10.1371/journal.pbio.0040226
Bonneau, L., Huguet, S., Wipf, D., Pauly, N., Truong, H. N. 2013. Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula. New Phytologist, 199, 188–202. DOI: https://doi.org/10.1111/nph.12234
Crawford, S., Shinohara, N., Sieberer, T., Williamson, L., George, G., Hepworth, J., Müller, D., Domagalska, M. A., Leyser, O. 2010. Strigolactones enhance competition between shoot branches by dampening auxin transport. Developement, 137, 2905–2913. DOI: https://doi.org/10.1242/dev.051987
Domagalska, M. A., Leyser, O., 2011. Signal integration in the control of shoot branching. Nature reviews; molecular cell biology, 12, 211–221. DOI: https://doi.org/10.1038/nrm3088
Foo, E., Reid, J. B., 2013. Strigolactones: New Physiological Roles for an Ancient Signal. Journal of Plant Growth Regulation, 32, 429–442. DOI: https://doi.org/10.1007/s00344-012-9304-6
Gogala, N., 1991. Regulation of mycorrhizal infection by hormonal factors produced by hosts and fungi. Experientia, 47, 331–340. DOI: https://doi.org/10.1007/BF01972074
Gomez-Roldan, V., Fermas, S., Brewer, P. B., Puech-Pagés, V., Dun, E. A. in sod. 2008. Strigolactone inhibition of shoot branching. Nature, 455, 189–195. DOI: https://doi.org/10.1038/nature07271
Maier, W., Hammer, K., Dammann, U., Schulz, B., Strack, D., 1996. Accumulation of sesquiterpenoid cycloheksenone derivatives induced by an arbuscular mycorrhizal fungus in members of the Poaceae. Planta, 202, 36–42. DOI: https://doi.org/10.1007/s004250050100
Matusova, R., Rani, K., Verstappen, F., Franssen, M., Beale, M., Bouwmeester, H., 2005. The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiology, 139, 920–934. DOI: https://doi.org/10.1104/pp.105.061382
Nordström, A., Tarkowski, P., Tarkowska, D., Norbaek, R., Astot, C., Dolezal, K., Sandberg, G., 2004. Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: A factor of potential importance for auxin-cytokinin-regulated development. PNAS, 101, 8039–8044. DOI: https://doi.org/10.1073/pnas.0402504101
Parniske, M., 2008. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature reviews; microbiology, 6, 763–775. DOI: https://doi.org/10.1038/nrmicro1987
Petrášek, J., Mravec, J., Bouchard, R., Blakeslee, J. J., Abas, M., Seifertová, D., Wiśniewska, J., Tadele, Z., Kubeš, M., Čovanová, M., Dhonukshe, P., Skůpa, P., Benková, E., Perry, L., Křeček P., Lee, O. R., Fink, G. R., Geisler, M., Murphy, A. S., Luschnig, C., Zažímalová, E., Friml, J. 2006.
PIN Proteins Perform a Rate-Limiting Function in Cellular Auxin Efflux. Science, 312, 914–918. DOI: https://doi.org/10.1126/science.1123542
Proust, H., Hoffmann, B., Xie, X., Yoneyama, K., Schaefer, G. D., Yoneyama Koichi, Nogue, F., Rameau, C., 2011. Strigolactones regulate protonema branching and act as a quorum sensing-like signal in the moss Physcomitrella patens. Developement, 138, 1531–1539. DOI: https://doi.org/10.1242/dev.058495
Prusinkiewicz, P., Crawford, S., Smith, R. S., Ljung, K., Bennett, T., Ongaro, V., Leyser, O., 2009. Control of bud activation by an auxin transport switch. PNAS, 106,17431–17436. DOI: https://doi.org/10.1073/pnas.0906696106
Rochange, S., 2010. Strigolactones and their role in arbuscular mycorrhizal symbiosis. V: Arbuscular mycorrhizas: Physiology and function. Koltai, H., Kapulnik, Y., New York, Springer: 323 str. DOI: https://doi.org/10.1007/978-90-481-9489-6_4
Strack, D., Fester, T., 2006. Isoprenoid metabolism and plastid reorganization in arbuscular mycorrhizal roots. New Phytologist, 172, 22–34. DOI: https://doi.org/10.1111/j.1469-8137.2006.01837.x
Taiz, L., Zeiger, E., 2006. Plant Physiology. 4. izdaja. Sinauer Associates, Massachusetts, 764 str.
Tamasloukht, B., Sejalon-Delmas, N., Kluever, A., Jauneau, A., Roux, C., Bécard, G., Franken, P., 2003. Root factor induce mitochondrial-related gene expression and fungal respiration during the developmental switch from asymbiosis to presymbiosis in the arbuscular mycorrhizal fungus Gigaspora rosea. Plant Physiology, 131, 1468–1478. DOI: https://doi.org/10.1104/pp.012898
Tanaka, M., Takei, K., Kojima, M., Sakakibara, H., Mori, H., 2006. Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. The Plant Journal, 45, 1028–1036. DOI: https://doi.org/10.1111/j.1365-313X.2006.02656.x
Umehara, M., Hanada, A., Yoshida, S., Akiyama, K., Arite, T. in sod., 2008. Inhibition of shoot branching by new terpenoid plant hormones. Nature, 455, 195–201. DOI: https://doi.org/10.1038/nature07272
Xie, X., Yoneyama, K., Yoneyama, K. 2010. The strigolactone story. Annual Review of Phytopathology, 48, 93–117. DOI: https://doi.org/10.1146/annurev-phyto-073009-114453
Yoneyama, K., Xie, X., Sekimoto, H., Takeuchi, Y.,Ogasawara, S. in sod., 2008. Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants. New Phytologist, 179, 484–494. DOI: https://doi.org/10.1111/j.1469-8137.2008.02462.x
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.