Effect of prepubertal caffeine consumption and recovery on adult erectile tissue functions in Wistar rats
Prepubertal caffeine and erectile functions
DOI:
https://doi.org/10.14720/abs.67.1.16294Keywords:
Prepubertal caffeine consumption, erectile tissue function, recovery, methyl blue, indomethacin, glibenclamideAbstract
The study examines the impact of caffeine consumption during prepubertal development and recovery on the contractile function of the adult corpus cavernosum in Wistar rats. Prepubertal male rats consumed distilled water (vehicle) and caffeine (5 mg/kg). A third group consumed caffeine and was allowed a period of recovery. Cavernosa tissues were excised at adulthood, and their contractile functions in the presence of Ca2+, K+, indomethacin, glibenclamide, methyl blue, L-NAME, and sodium nitroprusside were assessed. K+-induced increase in contraction in the caffeine-treated group was similar to that in the recovery group. Ca2+ ions, however, increased contraction significantly in the caffeine group compared to the recovery group. Acetylcholine-mediated relaxation (%) was significantly higher in the recovery compared to the caffeine treated after incubation with indomethacin and methyl blue. Acetylcholine-mediated relaxation, however, was higher in caffeine as compared to the recovery group after incubation with glibenclamide and L-NAME. Relaxation in the presence of sodium nitroprusside was significantly reduced in recovery than in the caffeine-treated group. Prepubertal caffeine intake had an erectogenic effect on the cavernous tissues in the presence of glibenclamide, nifedipine, and L-NAME. Inhibitors of prostacyclin (indomethacin) and cGMP (methyl blue) militate caffeine-induced relaxation. Effects were reversed after recovery.
References
Carreau S. (2007) Leydig cell aromatase: from gene to physiology. In: Payne AH, Hardy MP, editors. The Leydig cell in health and disease. Totowa, NJ: Humana Press, pg 189–195. DOI: https://doi.org/10.1007/978-1-59745-453-7_13
Cartledge, J., Minhas, S., & Eardley, I. (2001). The role of nitric oxide in penile erection. Expert opinion on pharmacotherapy, 2(1), 95–107. doi.org/10.1517/14656566.2.1.95 DOI: https://doi.org/10.1517/14656566.2.1.95
de Miranda Cará A., Fregonesi A., Antunes E., De Nucci G., Rodrigues Netto N. (2004) Role of adenosine triphosphate-dependent potassium channels in canine penile erection. Urology 64, 603–607. doi: 10.1016/j.urology.2004.04.044. DOI: https://doi.org/10.1016/j.urology.2004.04.044
Doumas, M., & Douma, S. (2006). The effect of antihypertensive drugs on erectile function: a proposed management algorithm. Journal of clinical hypertension 8(5), 359–364. doi.org/10.1111/j.1524-6175.2005.05285.x DOI: https://doi.org/10.1111/j.1524-6175.2005.05285.x
Echeverri D, Montes F.R, Cabrera M, Galán A, and Prieto A, (2010) Caffeine's vascular mechanisms of action,” International Journal of Vascular Medicine, vol. 2010, Article ID 834060, 10 pages. doi.org/10.1155/2010/834060 DOI: https://doi.org/10.1155/2010/834060
Elliott, W. J., & Ram, C. V. (2011). Calcium channel blockers. Journal of clinical hypertension 13(9), 687–689. doi.org/10.1111/j.1751-7176.2011.00513.x DOI: https://doi.org/10.1111/j.1751-7176.2011.00513.x
Higashi Y. (2019) Coffee and Endothelial Function: A Coffee Paradox? Nutrients. 11(9), 2104. doi.org/10.3390/nu11092104 DOI: https://doi.org/10.3390/nu11092104
Insuk S.O., Chae M.R., Choi J.W., Yang D.K., Sim J.H., Lee S.W. (2003) Molecular basis and characteristics of KATP channel in human corporal smooth muscle cells. International Journal Impotence Research 15, 258–266. doi: 10.1038/sj.ijir.3901013. DOI: https://doi.org/10.1038/sj.ijir.3901013
Joshi, S., Nelson, M. T., & Werner, M. E. (2012). Amplified NO/cGMP-mediated relaxation and ryanodine receptor-to-BKCa channel signalling in corpus cavernosum smooth muscle from phospholamban knockout mice. British Journal of Pharmacology, 165(2), 455–466. doi.org/10.1111/j.1476-5381.2011.01569.x DOI: https://doi.org/10.1111/j.1476-5381.2011.01569.x
Kong H, Jones PP, Koop A, Zhang L, Duff HJ, Chen SR. (2008) Caffeine induces Ca2+ release by reducing the threshold for luminal Ca2+ activation of the ryanodine receptor. Biochem Journal. 414(3), 441-452. doi: 10.1042/BJ20080489. DOI: https://doi.org/10.1042/BJ20080489
Lopez, D. S., Liu, L., Rimm, E. B., Tsilidis, K. K., de Oliveira Otto, M., Wang, R., Canfield, S., & Giovannucci, E. (2018). Coffee Intake and Incidence of Erectile Dysfunction. American Journal of Epidemiology, 187(5), 951–959. doi.org/10.1093/aje/kwx304 DOI: https://doi.org/10.1093/aje/kwx304
Lopez, D. S., Wang, R., Tsilidis, K. K., Zhu, H., Daniel, C. R., Sinha, A., & Canfield, S. (2015). Role of Caffeine Intake on Erectile Dysfunction in US Men: Results from NHANES 2001-2004. PloS one, 10(4), e0123547. doi.org/10.1371/journal.pone.0123547 DOI: https://doi.org/10.1371/journal.pone.0123547
Mahoney C.R., Giles G.E., Marriott B.P., Judelson D.A., Glickman E.L., Geiselman P.J., Lieberman H.R. (2019) Intake of caffeine from all sources and reasons for use by college students. Clin. Nutr. 38, 668–675. doi: 10.1016/j.clnu.2018.04.004 DOI: https://doi.org/10.1016/j.clnu.2018.04.004
Metro, D., Cernaro, V., Santoro, D., Papa, M., Buemi, M., Benvenga, S., & Manasseri, L. (2017). Beneficial effects of oral pure caffeine on oxidative stress. Journal of clinical & translational endocrinology, 10, 22–27. https://doi.org/10.1016/j.jcte.2017.10.001 DOI: https://doi.org/10.1016/j.jcte.2017.10.001
Nabofa, E.E., & Alada, ARA. (2020). Cardiovascular Effects of Caffeine in Rabbits Involve Beta-1 Adrenergic Receptor Activation. Journal of Caffeine and Adenosine Research 2020; 10 (2), 84-91. Doi:10.1089/caff.2019.0019. DOI: https://doi.org/10.1089/caff.2019.0019
Nawrot, P., Jordan, S., Eastwood, J., Rotstein, J., Hugenholtz, A., & Feeley, M. (2003) Effects of caffeine on human health. Food additives and contaminants, 20(1), 1–30. doi.org/10.1080/0265203021000007840 DOI: https://doi.org/10.1080/0265203021000007840
Ogunwole, E., Akindele, O. O., Oluwole, O. F., Salami, S. A., & Raji, Y. (2015). Effects of Oral Maternal Administration of Caffeine on Reproductive Functions of Male Offspring of Wistar Rats. Nigerian Journal of Physiological Sciences 30(1-2), 51–58.
Oluwole, O. F., Salami, S. A., Ogunwole, E., & Raji, Y. (2016). Implication of caffeine consumption and recovery on the reproductive functions of adult male Wistar rats. Journal of Basic and Clinical Physiology and Pharmacology, 27(5),483–491. https://doi.org/10.1515/jbcpp-2015-0134 DOI: https://doi.org/10.1515/jbcpp-2015-0134
Priviero, F. B., Leite, R., Webb, R. C., & Teixeira, C. E. (2007). Neurophysiological basis of penile erection. Acta pharmacologica Sinica, 28(6), 51–755. doi.org/10.1111/j.1745-7254.2007.00584.x DOI: https://doi.org/10.1111/j.1745-7254.2007.00584.x
Ramlau-Hansen CH, Thulstrup AM, Bonde JP, Olsen J, Bech BH. (2008) Semen quality according to prenatal coffee and present caffeine exposure: two decades of follow-up of a pregnancy cohort. Human Reproduction 23, 2799–805. DOI: https://doi.org/10.1093/humrep/den331
Salami, S. A., Salahdeen, H. M., Ugbebor, E. C., Murtala, B. A., & Raji, Y. (2018). Effects of aqueous leaf extract of Tridax procumbens on contractile activity of corpus cavernosum in N-nitro-l-arginine methyl ester-induced hypertensive male rats. Journal of integrative medicine, 16(1), 51–56. doi.org/10.1016/j.joim.2017.11.001 DOI: https://doi.org/10.1016/j.joim.2017.11.001
Scorza, C., Prieto, J.P., Fabius, S. (2022) Caffeine as an Active Adulterant: Implication for Drugs of Abuse Consumption. In: Patel, V.B., Preedy, V.R. (eds) Handbook of Substance Misuse and Addictions. Springer, Cham. doi.org/10.1007/978-3-030-92392-1_82 DOI: https://doi.org/10.1007/978-3-030-92392-1_82
Sehra D., Sehra S., Sehra S.T. (2011) Sulfonylureas: Do we need to introspect safety again? Expert Opinion Drug Safety 10, 851–861. doi: 10.1517/14740338.2011.583234. DOI: https://doi.org/10.1517/14740338.2011.583234
Sepkowitz K. A. (2013) Energy drinks and caffeine-related adverse effects. JAMA, 309(3), 243–244. doi.org/10.1001/jama.2012.173526 DOI: https://doi.org/10.1001/jama.2012.173526
Svartberg J, Midtby M, Bønaa KH, Sundsfjord J, Joakimsen RM, Jorde R. (2003) The associations of age, lifestyle factors and chronic disease with testosterone in men: the Tromsø Study. European Journal Endocrinology 149, 145–152. DOI: https://doi.org/10.1530/eje.0.1490145
Umemura, T., Ueda, K., Nishioka, K., Hidaka, T., Takemoto, H., Nakamura, S., …. Higashi, Y. (2006). Effects of acute administration of caffeine on vascular function. The American Journal of cardiology, 98(11), 1538–1541. doi.org/10.1016/j.amjcard.2006.06.058 DOI: https://doi.org/10.1016/j.amjcard.2006.06.058
Watanabe, C., Yamamoto, H., Hirano, K., Kobayashi, S., & Kanaide, H. (1992). Mechanisms of caffeine-induced contraction and relaxation of rat aortic smooth muscle. The Journal of physiology, 456, 193–213. doi.org/10.1113/jphysiol.1992.sp019333 DOI: https://doi.org/10.1113/jphysiol.1992.sp019333
Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. (2018) ESC/ESH guidelines for the management of arterial hypertension. European Heart Journal 39, 3021–104. doi: 10.1093/eurheartj/ehy339 DOI: https://doi.org/10.1093/eurheartj/ehy339
Yang, R., Wang, J., Chen, Y., Sun, Z., Wang, R., & Dai, Y. (2008). Effect of caffeine on erectile function via up-regulating cavernous cyclic guanosine monophosphate in diabetic rats. Journal of andrology, 29(5), 586–591. doi.org/10.2164/jandrol.107.004721 DOI: https://doi.org/10.2164/jandrol.107.004721
Published
Issue
Section
License
Copyright (c) 2023 Shakiru Salami, Omotoyosi, Michael Allen, Mofomosara, Adekunle
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.