Contribution of neutral processes to the assembly of microbial communities on Phragmites australis leaf litter

Authors

  • Matevž Likar University of Ljubljana, Biotechnical Faculty https://orcid.org/0000-0002-3086-6433
  • Mateja Grašič University of Ljubljana, Biotechnical Faculty
  • Alenka Gaberščik University of Ljubljana, Biotechnical Faculty

DOI:

https://doi.org/10.14720/abs.66.2.16495

Keywords:

bacterial communities, fungal communities, decomposition, freshwater ecosystem, ephemeral lake

Abstract

Phragmites australis is a remarkable aquatic plant known for its adaptability, wide ecological range and extensive presence in natural wetlands. When combined with its microbiome, it holds unique potential to enhance the overall functionality of wetland ecosystems. To fully harness this potential in both natural and constructed wetlands, it becomes crucial to understand the dynamics of decomposition regarding the substantial biomass generated by P. australis. However, our understanding of the selective and neutral processes that shape the microbial communities responsible for decomposing P. australis litter remains somewhat limited. In this context, our research reveals that the majority of microbial taxa inhabiting P. australis leaves and litter follow neutral distribution patterns, indicating they are less likely to be specifically adapted to the host plant or habitat. Their presence in the community primarily results from their prevalence in the broader metacommunity and source pool. Nonetheless, this should not be interpreted as these taxa being functionally unimportant or lacking close interactions with their host. Instead, the host environment does not differentially select them, and as a consequence, their distributions are shaped predominantly by neutral processes of dispersal and drift.

Metrics

Metrics Loading ...

Downloads

Download data is not yet available.

References

Alfredsson, H., Clymans, W., Stadmark, J., Conley, D., & Rousk, J. (2016). Bacterial and fungal colonization and decomposition of submerged plant litter: Consequences for biogenic silica dissolution. FEMS Microbiology Ecology, 92(3). https://doi.org/10.1093/femsec/fiw011 DOI: https://doi.org/10.1093/femsec/fiw011

Burns, A. R., Stephens, W. Z., Stagaman, K., Wong, S., Rawls, J. F., Guillemin, K., & Bohannan, B. J. M. (2016). Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME Journal, 10(3), 655–664. https://doi.org/10.1038/ismej.2015.142 DOI: https://doi.org/10.1038/ismej.2015.142

Cao, M. wen, Jia, T., Mi, J., Jing, J. hui, & Chai, B. feng. (2019). Relative roles of niche and neutral processes on turnover of plant, fungal and bacterial communities in arid and semi-arid areas at the regional scale. Basic and Applied Ecology, 40, 43–54. https://doi.org/10.1016/j.baae.2019.08.005 DOI: https://doi.org/10.1016/j.baae.2019.08.005

Chase, J. M., Kraft, N. J. B., Smith, K. G., Vellend, M., & Inouye, B. D. (2011). Using null models to disentangle variation in community dissimilarity from variation in α-diversity. Ecosphere, 2(2). https://doi.org/10.1890/ES10-00117.1 DOI: https://doi.org/10.1890/ES10-00117.1

Chase, J. M., & Myers, J. A. (2011). Disentangling the importance of ecological niches from stochastic processes across scales. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1576), 2351–2363. https://doi.org/10.1098/rstb.2011.0063 DOI: https://doi.org/10.1098/rstb.2011.0063

Dolinar, N., Regvar, M., Abram, D., & Gaberščik, A. (2016). Water-level fluctuations as a driver of Phragmites australis primary productivity, litter decomposition, and fungal root colonisation in an intermittent wetland. Hydrobiologia, 774(1), 69–80. https://doi.org/10.1007/s10750-015-2492-x DOI: https://doi.org/10.1007/s10750-015-2492-x

Ferreira, V., Raposeiro, P. M., Pereira, A., Cruz, A. M., Costa, A. C., Graça, M. A. S., & Gonçalves, V. (2016). Leaf litter decomposition in remote oceanic island streams is driven by microbes and depends on litter quality and environmental conditions. Freshwater Biology, 61(5), 783–799. https://doi.org/10.1111/fwb.12749 DOI: https://doi.org/10.1111/fwb.12749

Gao, C., Montoya, L., Xu, L., Madera, M., Hollingsworth, J., Purdom, E., Singan, V., Vogel, J., Hutmacher, R. B., Dahlberg, J. A., Coleman-Derr, D., Lemaux, P. G., & Taylor, J. W. (2020). Fungal community assembly in drought-stressed sorghum shows stochasticity, selection, and universal ecological dynamics. Nature Communications, 11(1). https://doi.org/10.1038/s41467-019-13913-9 DOI: https://doi.org/10.1038/s41467-019-13913-9

Grašič, M., Likar, M., Vogel-Mikuš, K., Samardžić, T., & Gaberščik, A. (2022). Decomposition rate of common reed leaves depends on litter origin and exposure location characteristics. Aquatic Botany, 179, 103513. https://doi.org/10.1016/j.aquabot.2022.103513 DOI: https://doi.org/10.1016/j.aquabot.2022.103513

He, C., Zheng, L., Gao, W., Ding, J., Li, C., Xu, X., Han, B., Li, Q., & Wang, S. (2022). Diversity and functions of quorum sensing bacteria in the root environment of the Suaeda glauca and Phragmites australis coastal wetlands. Environmental Science and Pollution Research, 29(36), 54619–54631. https://doi.org/10.1007/s11356-022-19564-6 DOI: https://doi.org/10.1007/s11356-022-19564-6

Heys, C., Cheaib, B., Busetti, A., Kazlauskaite, R., Maier, L., Sloan, W. T., Ijaz, U. Z., Kaufmann, J., McGinnity, P., & Llewellyn, M. S. (2020). Neutral processes dominate microbial community assembly in Atlantic Salmon, Salmo salar. Applied and Environmental Microbiology, 86(8). https://doi.org/10.1128/AEM.02283-19 DOI: https://doi.org/10.1128/AEM.02283-19

Jaiswal, S. K., Mohammed, M., Ibny, F. Y. I., & Dakora, F. D. (2021). Rhizobia as a Source of Plant Growth-Promoting Molecules: Potential Applications and Possible Operational Mechanisms. In Frontiers in Sustainable Food Systems (Vol. 4). Frontiers Media S.A. https://doi.org/10.3389/fsufs.2020.619676 DOI: https://doi.org/10.3389/fsufs.2020.619676

Kembel, S. W., O’Connor, T. K., Arnold, H. K., Hubbell, S. P., Wright, S. J., & Green, J. L. (2014). Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proceedings of the National Academy of Sciences, 111(38), 13715–13720. https://doi.org/10.1073/pnas.1216057111 DOI: https://doi.org/10.1073/pnas.1216057111

Kerr, B., Riley, M. A., Feldman, M. W., & Bohannan, B. J. M. (2002). Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature, 418(6894), 171–174. https://doi.org/10.1038/nature00823 DOI: https://doi.org/10.1038/nature00823

Kowalski, K. P., Bacon, C., Bickford, W., Braun, H., Clay, K., Leduc-Lapierre, M., Lillard, E., McCormick, M. K., Nelson, E., Torres, M., White, J., & Wilcox, D. A. (2015). Advancing the science of microbial symbiosis to support invasive species management: A case study on Phragmites in the Great Lakes. In Frontiers in Microbiology (Vol. 6, Issue FEB). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2015.00095 DOI: https://doi.org/10.3389/fmicb.2015.00095

Liang, Y., Ning, D., Lu, Z., Zhang, N., Hale, L., Wu, L., Clark, I. M., McGrath, S. P., Storkey, J., Hirsch, P. R., Sun, B., & Zhou, J. (2020). Century long fertilization reduces stochasticity controlling grassland microbial community succession. Soil Biology and Biochemistry, 151. https://doi.org/10.1016/j.soilbio.2020.108023 DOI: https://doi.org/10.1016/j.soilbio.2020.108023

Likar, M., Grašič, M., Stres, B., Regvar, M., & Gaberščik, A. (2022). Original Leaf Colonisers Shape Fungal Decomposer Communities of Phragmites australis in Intermittent Habitats. Journal of Fungi, 8(3), 284. https://doi.org/10.3390/jof8030284 DOI: https://doi.org/10.3390/jof8030284

Liu, Y., Ding, C., Li, X., Su, D., & He, J. (2023). Biotic interactions contribute more than environmental factors and geographic distance to biogeographic patterns of soil prokaryotic and fungal communities. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1134440 DOI: https://doi.org/10.3389/fmicb.2023.1134440

Longhi, D., Bartoli, M., & Viaroli, P. (2008). Decomposition of four macrophytes in wetland sediments: Organic matter and nutrient decay and associated benthic processes. Aquatic Botany, 89(3), 303–310. https://doi.org/10.1016/j.aquabot.2008.03.004 DOI: https://doi.org/10.1016/j.aquabot.2008.03.004

Rejmánková, E., & Houdková, K. (2006). Wetland plant decomposition under different nutrient conditions: What is more important, litter quality or site quality? Biogeochemistry, 80(3), 245–262. https://doi.org/10.1007/s10533-006-9021-y DOI: https://doi.org/10.1007/s10533-006-9021-y

Sawada, H., Kuykendall, L. D., & Young, J. M. (2003). Changing concepts in the systematics of bacterial nitrogen-fixing legume symbionts. The Journal of General and Applied Microbiology, 49(3), 155–179. https://doi.org/10.2323/jgam.49.155 DOI: https://doi.org/10.2323/jgam.49.155

Serna, A., Richards, J. H., & Scinto, L. J. (2013). Plant Decomposition in Wetlands: Effects of Hydrologic Variation in a Re-Created Everglades. Journal of Environmental Quality, 42(2), 562–572. https://doi.org/10.2134/jeq2012.0201 DOI: https://doi.org/10.2134/jeq2012.0201

Shen, D., Langenheder, S., & Jürgens, K. (2018). Dispersal modifies the diversity and composition of active bacterial communities in response to a salinity disturbance. Frontiers in Microbiology, 9(SEP). https://doi.org/10.3389/fmicb.2018.02188 DOI: https://doi.org/10.3389/fmicb.2018.02188

Sistla, S. A., Asao, S., & Schimel, J. P. (2012). Detecting microbial N-limitation in tussock tundra soil: Implications for Arctic soil organic carbon cycling. Soil Biology and Biochemistry, 55, 78–84. https://doi.org/10.1016/j.soilbio.2012.06.010 DOI: https://doi.org/10.1016/j.soilbio.2012.06.010

Sloan, W. T., Woodcock, S., Lunn, M., Head, I. M., & Curtis, T. P. (2007). Modeling taxa-abundance distributions in microbial communities using environmental sequence data. Microbial Ecology, 53(3), 443–455. https://doi.org/10.1007/s00248-006-9141-x DOI: https://doi.org/10.1007/s00248-006-9141-x

Stegen, J. C., Lin, X., Fredrickson, J. K., Chen, X., Kennedy, D. W., Murray, C. J., Rockhold, M. L., & Konopka, A. (2013). Quantifying community assembly processes and identifying features that impose them. ISME Journal, 7(11), 2069–2079. https://doi.org/10.1038/ismej.2013.93 DOI: https://doi.org/10.1038/ismej.2013.93

Stottmeister, U., Wießner, A., Kuschk, P., Kappelmeyer, U., Kästner, M., Bederski, O., Müller, R. A., & Moormann, H. (2003). Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnology Advances, 22(1–2), 93–117. https://doi.org/10.1016/j.biotechadv.2003.08.010 DOI: https://doi.org/10.1016/j.biotechadv.2003.08.010

Vekemans, B., Janssens, K., Vincze, L., Adams, F., & Van Espen, P. (1994). Analysis of X-ray spectra by iterative least squares (AXIL): New developments. X-Ray Spectrometry, 23(6), 278–285. https://doi.org/https://doi.org/10.1002/xrs.1300230609 DOI: https://doi.org/10.1002/xrs.1300230609

Vokou, D., Genitsaris, S., Karamanoli, K., Vareli, K., Zachari, M., Voggoli, D., Monokrousos, N., Halley, J. M., & Sainis, I. (2019). Metagenomic characterization reveals pronounced seasonality in the diversity and structure of the phyllosphere bacterial community in a mediterranean ecosystem. Microorganisms, 7(11). https://doi.org/10.3390/microorganisms7110518 DOI: https://doi.org/10.3390/microorganisms7110518

Wallace, J., Laforest-Lapointe, I., & Kembel, S. W. (2018). Variation in the leaf and root microbiome of sugar maple ( Acer saccharum ) at an elevational range limit. PeerJ, 6, e5293. https://doi.org/10.7717/peerj.5293 DOI: https://doi.org/10.7717/peerj.5293

Whipps, J. M., Hand, P., Pink, D., & Bending, G. D. (2008). Phyllosphere microbiology with special reference to diversity and plant genotype. In Journal of Applied Microbiology (Vol. 105, Issue 6, pp. 1744–1755). Blackwell Publishing Ltd. https://doi.org/10.1111/j.1365-2672.2008.03906.x DOI: https://doi.org/10.1111/j.1365-2672.2008.03906.x

Zhang, C., Wei, G., & Shu, D. (2023). Temporal loss of fungal taxa driven by drift contributes to community stability during soybean development. Applied Soil Ecology, 186. https://doi.org/10.1016/j.apsoil.2023.104819 DOI: https://doi.org/10.1016/j.apsoil.2023.104819

Downloads

Published

07.12.2023

Issue

Section

Original Research Paper

How to Cite

Likar, M., Grašič, M., & Gaberščik, A. (2023). Contribution of neutral processes to the assembly of microbial communities on Phragmites australis leaf litter. Acta Biologica Slovenica, 66(2), 16-25. https://doi.org/10.14720/abs.66.2.16495

Most read articles by the same author(s)

1 2 3 > >>