Harmful cyanobacterial blooms in Slovenia - Bloom types and microcystin producers


  • Bojan Sedmak
  • Gorazd Kosi




cyanobacteria, blue-green algae, harmful bloom, microcystins, eutrophication


Up to now, research on cyanobacteria and their biologically active substances has been directed principally towards their harmful effects on humans, and little has been done to elucidate their ecological role. In order to understand better the biological success of cyanobacterial blooms, and in order to be able to compare the results of different scientific investigations, we must find and agree on a definition of the phenomenon. We propose a definition of harmful cyanobacterial blooms based on the OECD boundary system of eutrophication with the addition of phycocyanin values. We have found a direct linkage between the trophic conditions in the water-bodies and the frequency of formation of cyanobacterial blooms. Specific toxic species and their strains have been studied intensively. However, in order to elucidate the mechanisms that enable cyanobacteria to overtake eutrophic water bodies we must change our approach. Cyanobacterial blooms should not be treated merely as different species or strains but as superorganisms. It is their intraspecific diversity that permits cyanobacteria to be successful in a variable water environment. Wehere focus attention on microcystin producers and microcystins as an adaptation to the limited light conditions, which arise in cyanobacterial blooms. The conclusions are illustrated with some data from surface water-bodies in Slovenia.


ANON. ( 1982): Eutrophication of Waters. Monitoring, Assesment and Control. Organisation for Economic Cooperation and Development, Paris, pp. 154.

BENNDORF, J. & HENNING, M. (1989): Daphnia and toxic blooms of Microcystis aeruginosa in Bautzen Reservoir (GDR). Int. Rev. Ges. Hydrobiol. 74, 223-248. DOI: https://doi.org/10.1002/iroh.19890740302

CARMICHAEL, W.W. (1992): A review. Cyanobacteria secondary metabolites - the cyanotoxins. J. Appl. Bacterial. 72, 445-459. DOI: https://doi.org/10.1111/j.1365-2672.1992.tb01858.x

CARMICHAEL, W.W. (1994): The toxins of cyanobacteria. Sci. Am. 270, 78-86. DOI: https://doi.org/10.1038/scientificamerican0194-78

CLARKE, K.R. & WARWICK, R.M. (1990): Lecture notes for the training workshop on the statistical treatment and interpretation on marine community data. Part II - Long term Programme for Pollution Monitoring and Research in the Mediterranean Sea. (MED POL-Phase II), FAO, UNESCO, UNEP, Split.

DEMOTT, W.R., ZHANG, Q.X. & CARMICHAEL, W.W. (1991): Effects of toxic cyanobacteria and purified toxins on the survival and feeding of a copepod and 3 species of Daphnia. Limn. Oceanogr. 36, 1346-1357. DOI: https://doi.org/10.4319/lo.1991.36.7.1346

DITTMANN, E., NEILAN, B.A., ERHARD, M., voN D6HREN, H. & B6RNER, T. (1997): Insertional mutagenesis of a peptide synthetase gene that is responsible for hepatotoxins production in the cyanobacterium Microcystis aeruginosa PCC 7806. Mo!. Microbiol. 26, 779 - 787. DOI: https://doi.org/10.1046/j.1365-2958.1997.6131982.x

FERGUSON, A.J.D., PEARSON, M.J. & REYNOLDS, C.S. (1996): Eutrophication of natural waters and toxic algal blooms. In·: Agricultural Chemicals and the Environment (HESTER, RE & HARRISON, RM, eds.), Issues in environmental science and technology, 5, 27-41, The Royal Soc. Chem., Cambridge. GANF, G.G. & OLIVER, (1982): Vertical separation of light and available nutrients as a factor causing replacement of green algae by blue-green algae in the plankton of stratified lake. J. Ecol., 70, 829- 844. DOI: https://doi.org/10.2307/2260107

GEORGE, D.G. & EDWARDS, R.W. (1976): The effect of wind on the distribution of chlorophyll a and crustacean plankton in a shallow eutrophic reservoir. J. Appl. Ecol. 13, 667 - 690. DOI: https://doi.org/10.2307/2402246

HARADA, K-I., MATSUURA, K., SUZUKI, M., OKA, H., WATANABE, M. F., OISHI, S., DAHLEM, A., BEASELY, V. R. & CARMICHAEL, W.W. (1988) Chemical analysis of toxic peptides produced by cyanobacteria. J. Chromatogr., 448, 275-238. DOI: https://doi.org/10.1016/S0021-9673(01)84589-1

HlNDAK, J. (1981) On some algal species living in the mucilage of the colonial blue-green alga Microcystis aeruginosa. Biologia (Bratislava), 36, 809-816.

IBELINGS, B.W. & MuR L.R. (1992): Microprofiles of photosynthesis and oxygen concentration in Microcystis sp. scums. FEMS Microbiol. Ecol. 86, 195 - 203. DOI: https://doi.org/10.1111/j.1574-6968.1992.tb04810.x

JUNGMANN, D., LuDWICHOWSKI, K.-U., FALTIN, V. & BENNDORF, J. (1996): A field study to investigate environmental factors that could effect microcystin synthesis of a Microcystis population in the Bautzen reservoir. Int. Rev. ges. Hydrobiol. 81, 493-501 DOI: https://doi.org/10.1002/iroh.19960810402

KAEBERNICK, M. & NEILAN, B. (200l): Minireview. Ecological and molecular investigations of cyanotoxin production. FEMS Microbiol. Ecol. 35, l - 9. DOI: https://doi.org/10.1111/j.1574-6941.2001.tb00782.x

KoNOPKA, A. (1989): Metalimnetic cyanobacteria in hard-water lakes. Buoyancy regulation and physiological state. Limnol. Oceanogr. 34, 1174 - 1184. DOI: https://doi.org/10.4319/lo.1989.34.7.1174

KoMAREK, J. (1991) A review of water-bloom forming Microcystis species with regard to population

from Japan. Algological Studies, 64, 115-127.

KOMAREK, J. (1958) Die taxonomische revision der planktischen blaualgen der

Tschechoslowakei. In Komarek, J. & Ettl, H. (eds.), "Algologishe Studien", Praha: Naki. CSAV, pp.


KROMKAMP, J. & WALSBY, A.E. (1990): A computer model of buoyancy and vertical migration in cyanobacteria. J. Plankton Res. 12, 161 - 183. DOI: https://doi.org/10.1093/plankt/12.1.161

LAHTI, K. (1997): Cyanobacterial hepatotoxins and drinking water supplies - aspects of monitoring and potential health risks. Monographs Boreal Environ. Res. 4, 40 pp.

LIN, C.K. (1972): Phytoplankton succession in a eutrophic lake with special reference to blue-green algal blooms. Hydrobiologia 39, 321-334. DOI: https://doi.org/10.1007/BF00046648

LINDHOLM, T. (1994): The meaning of some common terms used in sampling toxic phytoplankton.

Freshwat. Forum, 4, 97 - 103.

MEIBDNER, K., DITTMANN, E. & BORNER, T. (1996): Toxic and non-toxic strains of the cyanobacterium Microcystis aeruginosa contain sequences homologous to peptide synthetase genes. FEMS Microbiol. Lett. 135, 295 - 303. DOI: https://doi.org/10.1016/0378-1097(95)00469-6

MEz, K., BEATTIE, K.A., CoDD G.A., HAUSER, K.B.H., NEAGELI, H & PREISIG, H.R. (1997): Identification

of a microcystin an benthic cyanobacteria linked to cattle deaths on alpine pastures in Switzerland. Eur. J. Phycol., 32, 111-117. DOI: https://doi.org/10.1080/09670269710001737029

MuR, L.R. (1983): Some aspects of the ecophysiology of cyanobacteria. Ann. Microbiol. (Inst. Pasteur), 134B, 61-72. DOI: https://doi.org/10.1016/S0769-2609(83)80097-0

NEILAN, B.A., DITTMANN, E., RouHIAINEN, L., BAss, R.A., SCHAUB, V., S1voNEN, K. & BoRNER, T. (1999):

Nonribosomal peptide synthesis and toxigenicity of cyanobacteria. J. Bacteriol. 4089 - 4097.

NIZAN, S., DIMENTMAN, C. & SHILO, M. (1986): Acute toxic effects of the cyanobacteria Microcystis aeruginosa on Daphnia magna. Limnol. Oceanogr. 31, 497-502. DOI: https://doi.org/10.4319/lo.1986.31.3.0497


Evidence for extensive and non-specific translocation of oligopeptides across plasma membranes of mammalian cells. Biochim. Biophys. Acta, 1330, 50-60. DOI: https://doi.org/10.1016/S0005-2736(97)00141-7

OLSON, T.A. (1964): Waterfowl tomorrow. In: Blue-greens, JK Lindurska (ed.), U.S. Department of interior Fish and Wildlife service, Washington D.C., 349 - 356.

RLIK, K. (1981) Succession of phytoplankton in response to environmental factors in Lake Arres0, North Zealand, Denmark. Schweitz. Z. Hydro[., 43, 6-19. DOI: https://doi.org/10.1007/BF02502469

ORR, P.T. & JoNEs, G. J. (1998): Relationship between microcystin production and cell division rates in nitrogen limited Microcystis aeruginosa cultures. Limnol. Oceanogr. 43, 1604- 1614. DOI: https://doi.org/10.4319/lo.1998.43.7.1604

RAPALA, J., SIVONEN, K., LYRA, C. & NIEMELA, S.I. (1997): Variation ofmicrocystins, cyanobacterial hepatotoxins, in Anabaena spp. as a function of growth stimuli. Appl. Environm. Microbiol. 2206 - 2212. DOI: https://doi.org/10.1128/aem.63.6.2206-2212.1997

REYNOLDS, C.S. (1980): Phytoplankton assemblages and their periodicity in stratifying lake systems. DOI: https://doi.org/10.1111/j.1600-0587.1980.tb00721.x

Holarctic Ecology 3, 141 - 159.

REYNOLDS, C.S. (1984a): Phytoplankton periodicity: the interaction of form, function and environmental variability. Freshwater Biol., 14, 111 - 142. DOI: https://doi.org/10.1111/j.1365-2427.1984.tb00027.x

REYNOLDS, C.S. (1984b): The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge, pp. 384.

REYNOLDS, C.S. & WALSBy, A.E. (1975): Water-blooms. Biological Reviews of the Cambridge Philosophical Society, 50, 437-481. DOI: https://doi.org/10.1111/j.1469-185X.1975.tb01060.x

ScttoPF, J. W. ( I993): Microfossils of the Early Archaen Apex chert: New evidence of the antiquity of life. Science 260, 640- 646. DOI: https://doi.org/10.1126/science.260.5108.640

ScttOPF, J.W. (2000): The fossil record: tracing the roots of the cyanobacterial lineage. In: The ecology of cyanobacteria. Whitton BA & Potts M (eds.), Kluwer Academic Pub., Dordrecht, 13-35.

SEDMAK, B. (2001): Microcystin production - an adaptation to low light conditions. Proc ICECEAT, Beijing, China Vol.I, 244-246.

SEDMAK, B. & Kosr, G. (1998a): The role of microcystins in heavy cyanobacterial bloom formation. J. Plankton Res. 20, 691-708. DOI: https://doi.org/10.1093/plankt/20.4.691

SEDMAK, B. & Kos1, G. (1998b): Erratum. The role of microcystins in heavy cyanobacterial bloom formation. J. Plankton Res. 20, 1421. DOI: https://doi.org/10.1093/plankt/20.7.1421

SEDMAK, B. & Kos,, G. (1997a): Microcystins in Slovene freshwaters (Central Europe)- first report. Nat. toxins, 5, 64 -73). DOI: https://doi.org/10.1002/(SICI)(1997)5:2<64::AID-NT3>3.0.CO;2-O

SEDMAK, B. & Kos,, G. (1997b): Cyanobacterial blooms in fish-ponds of Slovenia and their toxicity. Ichthyos 14, 9-21.

SEDMAK,B. & Kos1, G. (1991):Algae and their toxins in national waters. Contemplations on cyanobacterial bloom, Aphanizamenonflos-aquae, in the Lake Bled. Vodoprivreda, 23, 265 - 272.

SEDMAK, B., Kost, G., & KOLAR, B. (1994): Cyanobacteria and their relevance. Period. Biol. 96, 428- 430.

Sttt, L., CARMICHAEL, W.W. & MtLLER, I. (1995): Immuno-gold localization of hepatotoxins in cyanobacterial cells. Arch. Microbial. 163, 7-15. DOI: https://doi.org/10.1007/BF00262197

STARMACH, K. (1966) Cyanophyta-Sinice Glaucophyta-Glakofity. Flora slodkowodna Polski, Tom 2, Warszawa, p. 807.

UTKILEN, H. & GJ0LME, N. (1992): Toxin production by Microcystis aeruginosa as a function of light in continuous cultures and its ecological significance. Appl. Envoron. Microbial. 58, 1321-1325. VOLLENWEIDER R.A. (1974): Primary production in aquatic environments. Int Biol. Prog. Handbook 12, Oxford, Blackwell Sci.Pub. 225 pp. DOI: https://doi.org/10.1128/aem.58.4.1321-1325.1992

WALSBY,A.E. (1994): Gas vesicles. Microbiol. Rev. 58, 94- 144. DOI: https://doi.org/10.1128/mr.58.1.94-144.1994

WATANABE, M.F. & 01stt1, S. (1985): Effects of environmental factors on toxicity of a cyanobacterium (Microcystis aeruginosa) under culture conditions. Appl.Environ. Microbial. 49, 1342 - 1344. DOI: https://doi.org/10.1128/aem.49.5.1342-1344.1985

WEBSTER, LT. & HUTCHINSON, P.A. (1994): Effect of wind on the distribution of phytoplankton cells in lakes revisited. Limnol. Oceanogr. 39, 365 - 373. DOI: https://doi.org/10.4319/lo.1994.39.2.0365






Original Research Paper

How to Cite

Sedmak, B., & Kosi, G. (2002). Harmful cyanobacterial blooms in Slovenia - Bloom types and microcystin producers. Acta Biologica Slovenica, 45(1), 17-30. https://doi.org/10.14720/abs.45.1.16625

Similar Articles

11-20 of 37

You may also start an advanced similarity search for this article.