Adaptive mutation: shall we survive bacterial genetic skills?

Authors

  • Rok Krašovec
  • Igor Jerman

DOI:

https://doi.org/10.14720/abs.45.2.16628

Keywords:

adaptive mutation, inducible mutagenesis, transposable elements, signal transduction network, neo-darwinism

Abstract

The origin and dynamics of genetic variations is one of the key questions in the modem science that has still not come out with a final answer. Emerging concepts regarding genetic variation have always produced a great controversy because they hold a key to unlock a great mystery of evolution. With such a powerful motivation scientist working in the molecular biology, genetics and biochemistry gathered a vast amount of experimental data showing us that a genome is a dynamic, hierarchically organized and complex integrated system for storing and processing information. Dynamic balance between stability and mutability of DNA nucleotide sequences is essential for a proper functioning of the organism. Beside many DNA repairing proteins and DNA protective mechanisms organisms possess also biochemical systems capable of changing DNA information. One of the most controversial and at the same time the most informative one is a phenomenon called adaptive mutation. We shall review findings concerning the phenomenon of adaptive mutation in prokaryotes and point out an urgent need for the upgrade of the awkward neo-darvinistic view on the origin .of the genetic variation.

References

ALONSO A., E. CAMPANARIO & J.L. MARTINEZ 1999: Emergence of multidrug-resistant mutants is increased under antibiotic selective pressure in Pseudomonas aeruginosa. Microbiology­ (UK) 145: 2875-2862. DOI: https://doi.org/10.1099/00221287-145-10-2857

ANDERSSON D. I., E. S. SLECHTA & J. R. Rom 1998: Evidence that gene amplification underlies adaptive mutability of the bacterial operon. Science 282: 1133-1 I 35. DOI: https://doi.org/10.1126/science.282.5391.1133

BERG D. E. & M. M. HoWE (ed.) 1989: Mobile DNA. ASM Press, Washington D.C.

BRIDGES B. A. 2001: Hypermutation in bacteria and other cellular systems. Philos. Trans. R. Soc. Lond. B 356: 29-39. DOI: https://doi.org/10.1098/rstb.2000.0745

BuLL H. J., G. J. McKENZIE, P. J. HASTINGS & S. M. ROSENBERG 2000a: Response to John Cairns:

Contribution of transiently hypermutable cells to mutation in stationary phase. Genetics 156: 925-926. DOI: https://doi.org/10.1093/genetics/156.2.925

BuLL H.J., G. J. McKENZIE, P. J. HASTINGS & S. M. ROSENBERG 2000b: Evidence that stationary-phase hypermutation in the E.coli chromosome is promoted by recombination. Genetics 154: 1427-1437. DOI: https://doi.org/10.1093/genetics/154.4.1427

CAIRNS J. 2000: The Contribution of bacterial hypermutators to mutation in stationary phase. Genetics 156: 923. DOI: https://doi.org/10.1093/genetics/156.2.923

CAIRNS J. & P.L. FOSTER 1991: Adaptive reversions of a frameshift mutation in Escherichia coli. Genetics 128: 695-701. DOI: https://doi.org/10.1093/genetics/128.4.695

CAIRNS J. 1998: Mutation and cancer: The antecedents to our studies of adaptive mutation. Genetics 148: 1433-1440. DOI: https://doi.org/10.1093/genetics/148.4.1433

CAIRNS J., J. OVERBAUGH & S. MILLER 1988: The origin of mutants. Nature 335: 142-145. CAPORALE L.H. 1999: Chance favors the prepared genome. Ann. N.Y. Acad. Sci. 870: 1-21. DOI: https://doi.org/10.1038/335142a0

CAPY P., G. GASPERI, C. BIEMONT & C. BAZIN 2000: Stress and transposable elements: co-evolution or useful parasites? Heredity 85(2): 101-106. DOI: https://doi.org/10.1046/j.1365-2540.2000.00751.x

CAVALLI-SFORZA L. L. & J. LEDERBERG 1956: Isolation of pre-adaptive mutants in bacteria by sib selection. Genetics 41: 367-381. DOI: https://doi.org/10.1093/genetics/41.3.367

DARWIN C. 1859: The origin of species., J. Murray, Albemarle Street, London

FEDOROFF N. V. 1999: Transposable elements as a molecular evolutionary force. Ann. N.Y. Acad. Sci. 870: 251-264. DOI: https://doi.org/10.1111/j.1749-6632.1999.tb08886.x

FJJALKOWSKA I. J., R. L. DUNN & R.M. ScttAAPER 1997: Genetic requirements and mutational specificity of the E.coli SOS mutator activity. J. Bacteriol. 179: 7435-7445. DOI: https://doi.org/10.1128/jb.179.23.7435-7445.1997

FosTER P. L. & J. CAIRNS 1992: Mechanisms of directed mutation. Genetics 131: 783-789. DOI: https://doi.org/10.1093/genetics/131.4.783

FosTER P. L. & J. CAIRNS 1994: The occurence of heritable Mu excisions in starving cells of E.coli. EMBO J. 13: 5240-44. DOI: https://doi.org/10.1002/j.1460-2075.1994.tb06855.x

FosTER P. L. 1997: Non-adaptive mutations occur on the F' episome during adaptive mutation conditions in Escherichia coli. J. Bacteriol. 179: 1550-1554. DOI: https://doi.org/10.1128/jb.179.5.1550-1554.1997

FOSTER P. L. 1999: Mechanisms of stationary phase mutation: A decade of adaptive mutation. Annu. Rev. Genet. 33: 57-88. DOI: https://doi.org/10.1146/annurev.genet.33.1.57

FosTER P. L. 2000: Adaptive mutation: implications for evolution. BioEssays 22: 1067-1074. GALITSKI T. & J. R. Rom 1996: A search for a general phenomenon of adaptive mutability. Genetics 143: 645-659. DOI: https://doi.org/10.1002/1521-1878(200012)22:12<1067::AID-BIES4>3.0.CO;2-Q

GoDOY V. G. & M. S. Fox 2000a: Transposon stability and a role for conjugational transfer in adaptive mutability. Proc. Natl. Acad. Sci. U.S. A. 97: 7393-7398. DOI: https://doi.org/10.1073/pnas.130186597

GODOY V. G., F. S. GIZATULLIN & M.S. Fox 2000b: Some features of the mutability of bacteria during nonlethal selection. Genetics 154: 49-59. DOI: https://doi.org/10.1093/genetics/154.1.49

GOMEZ-GOMEZ J.M., J. BLAZQUEZ, F. BAQUERO & J.L. MARTINEZ 1997: H-NS and RpoS regulate emergence of LacAra+ mutants of E.coli MCS2. J. Bacteriol. 179: 4620-4622. DOI: https://doi.org/10.1128/jb.179.14.4620-4622.1997

GROISMAN E. A. 2001: The pleiotropic two-component regulatory system PhoP-PhoQ. J. Bacteriol. 183: 1835-1842. DOI: https://doi.org/10.1128/JB.183.6.1835-1842.2001

HALL B. G. 1988: Adaptive evolution that requires multiple spontaneus mutations. I. Mutations involving an insertion sequence. Genetics 120: 887-897. DOI: https://doi.org/10.1093/genetics/120.4.887

HALL B. G. 1990: Spontaneous point mutations that occur more often when advantageous than when neutral. Genetics 126: 5- I6. DOI: https://doi.org/10.1093/genetics/126.1.5

HALL B. G. 1995: Adaptive mutations in E.coli as a model for the multiple mutational origins of tumors. Proc. Natl. Acad. Sci U.S.A. 92: 5669-5673. DOI: https://doi.org/10.1073/pnas.92.12.5669

HALL B. G. 1998a: Activation of the bgl operon by adaptive mutation. Mol. Biol. Evol. 15( I): 1-5. HALL B. G. 1998b: Adaptive mutagenesis at ebgR is regulated by PhoPQ. J. Bacteriol. 180: 2862-2865. DOI: https://doi.org/10.1128/JB.180.11.2862-2865.1998

HALL B. G. 1998c: Adaptive mutagenesis: a process that generates almost exclusively beneficial mutations. Genetica 102/103: 109-125. DOI: https://doi.org/10.1007/978-94-011-5210-5_11

HALL B. G. 1999a: Spectra of spontaneous growth-dependent and adaptive mutations at ebgR. J. Bacteriol.181: 1149-1155. DOI: https://doi.org/10.1128/JB.181.4.1149-1155.1999

HALL B. G. 1999b: Transposable elements as activators of cryptic genes in E.coli. Genetica 107: 181- 187. DOI: https://doi.org/10.1007/978-94-011-4156-7_20

HALL B. G., P.W. BETTS & J.C WooTTON 1989: DNA sequence analysis of artificially evolved ebg enzyme and ebg repressor genes. Genetics 123: 635-648. DOI: https://doi.org/10.1093/genetics/123.4.635

HARRISS. B., G. FENG, K. J. Ross, R. SIDHU, C. THULIN, S. LoNGERICH, S. K. Sz1GETY, M. E. WINKLER & S.M. RosENBERG 1997: Mismatch repair protein MutL becomes limiting during stationary­ phase mutation. Genes Dev. 11: 2426-2437. DOI: https://doi.org/10.1101/gad.11.18.2426

HENDRICKSON H., E. S. SLECHTA, U. BERGTHORSSON, D. I. ANDERSSON & J. R. Rorn 2002: Amplification­ mutagenesis: Evidence that "directed" adaptive mutation and general hypermutability result from growth with a selected gene amplification. Proc. Natl. Acad. Sci. U.S. A. 99: 2164- 2169. DOI: https://doi.org/10.1073/pnas.032680899

JAYARAMAN R. 2000: Modulation of allele leakiness and adaptive mutability in E.coli. J. Genetics 79(2): 55-60. DOI: https://doi.org/10.1007/BF02728946

JAYARAMAN R. 1995: Leakiness of genetic markers and susceptibility to post-plating mutagenesis in E.coli. J. Genetics 74(3): 85-79. DOI: https://doi.org/10.1007/BF02932195

KARUNAKARAN P. & J. DAVIES 2000: Genetic antagonism and hypermutability in Mycobacterium smegmatis. J. Bacteriol. 182: 3331-3335. DOI: https://doi.org/10.1128/JB.182.12.3331-3335.2000

KASAHARA M., A. NAKATA & H. SHINAGAWA 1992: Molecular analysis of the Escherichia coli phoP­ phoQ operon. J. Bacteriol. 174: 492-498. DOI: https://doi.org/10.1128/jb.174.2.492-498.1992

KASAK L., R. HORAK & M. K1v1sAAr I 997: Promoter-creating mutations in Pseudomonas putida: A model system for the study of mutation in starving bacteria. Proc. Natl. Acad. Sci. U.S.A. 94: 3134-3139. DOI: https://doi.org/10.1073/pnas.94.7.3134

LAMRANI S., C. RANQUET, M-J. GAMA, H. NAKAI, J. A. SHAPIRO, A. TOUSSAINT & G. MAENHAUT-MICHEL 1999: Starvation-induced Mucts62-mediated coding sequence fusion: a role for ClpXP, Lon, RpoS and Crp. Mol. Microbiol. 32: 327-343. DOI: https://doi.org/10.1046/j.1365-2958.1999.01352.x

LEDERBERG J. & E. M. LEDERBERG 1952: Replica plating and indirect selection of bacterial mutants. J. Bacteriol. 63: 399-406. DOI: https://doi.org/10.1128/jb.63.3.399-406.1952

LENSKI R. E. & J.E. MITTLER 1993: The directed mutation controversy and neo-darwinism. Science 259: 188-194. DOI: https://doi.org/10.1126/science.7678468

LENSKI R. E., M. SLATKIN & F. J. AYALA 1989: Mutation and selection in bacterial populations: Alternatives to the hypothesis of directed mutation. Proc. Natl. Acad. Sci. U.S. A. 86: 2775-2778. DOI: https://doi.org/10.1073/pnas.86.8.2775

LIOY M., S. DABIZZI, S. AMMANATO, A. CACIOTTI, L. CIONI & R. FAN! 2001: Activation of cam promotorless gene by ISRIO transposition in an Echerichia coli population under stress conditions. Ann. Microbiol. 51: 225-233.

LoMBARDO M. J., J. TORKELSON, H.J. Bu L, G. J. McKENZIE & S. M. ROSENBERG 1999: Mechanisms of genome-wide hypennutation in stationary phase. Ann. N.Y. Acad. Sci. 870: 275-289. DOI: https://doi.org/10.1111/j.1749-6632.1999.tb08888.x

LURIA S. E. & M. DELBR0CK 1943: Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28: 491-511. DOI: https://doi.org/10.1093/genetics/28.6.491

MADIGAN M. T., J. M. MARTINKO & J. PARKER (ed.) 2000: Brock Biology of microorganisms. Ninth edition. Prentice Hall, NY.

MAENHAUT-MICHEL G. & J. A. SHAPIRO 1994: The roles of starvation and selective substrates in the emergence of araB-lacZ fusion clones. EMBO J. 13: 5229-5239. DOI: https://doi.org/10.1002/j.1460-2075.1994.tb06854.x

MAENHAUT-MICHEL G., C. E. BLAKE, D.R. F. LEACH & J. A. SHAPIRO 1997: Different structures of selected and unselected araB-lacZ fusions. Mo!. Microbial. 23: 1 I 33-1145. DOI: https://doi.org/10.1046/j.1365-2958.1997.3031666.x

MAHILLON J. & M. CHANDLER 1998: Insertion sequences. Microbial. Mol. Biol. Rev. 62(3): 725-774. MARTINEZ J. L. & F. BAQUERO 2000: Mutation frequencies and antibiotic resistance. Antimicrob. Agents. Chemother. 44: 1771-1777. DOI: https://doi.org/10.1128/AAC.44.7.1771-1777.2000

MASSEY R. C., P. B. RAINEY, B. J. SHEEHAN, KEANE 0. M. & C. J. DORMAN 1999: Environmentally constrained mutation and adaptive evolution in Salmonella. Curr. Biol. 9: 1477-1480. DOI: https://doi.org/10.1016/S0960-9822(00)80117-7

McCLINTOCK B. 1984: The significanse of responses of the genome to challenge. Science 226: 792-801. McKENZIE G. J., P. L. LEE, M. J. LOMBARDO, P. J. HASTINGS & S. M. RosENBERG 2001: SOS mutator DNA polymerase IV functions in adaptive mutation and not adaptive amplification. Mo!. Cell. 7: 571-579. DOI: https://doi.org/10.1016/S1097-2765(01)00204-0

McKENZIE G. J., R. S. HARRIS, P. L. LEE & S. M. RosENBERG 2000: The SOS response regulates adaptive mutation. Proc. Natl. Acad. Sci. U.S. A. 97: 6646-6651. DOI: https://doi.org/10.1073/pnas.120161797

MITTLER J.E. & R. E. LENSKI 1990: New data on excisions of Mu from E.coli MCS2 cast doubt on directed mutation hypotheses. Nature 344: 173-175. DOI: https://doi.org/10.1038/344173a0

MoxoN E. R., P. B. RAINEY, A. M. NowAK & R. E. LENSKI 1994: Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr. Biol. 4: 24-33. DOI: https://doi.org/10.1016/S0960-9822(00)00005-1

NAAS T., M. BLOT, W. M. FITCH & W. ARBER 1994: Insertion sequence-related genetic variation in resting E.coli K-12. Genetics 136: 721-730. DOI: https://doi.org/10.1093/genetics/136.3.721

RADMAN M, I. MATIC & F. TADDEI 1999: Evolution of evolvability. Ann. N.Y. Acad. Sci. 870: 146-155. DOI: https://doi.org/10.1111/j.1749-6632.1999.tb08874.x

REYNOLDS A. E., J. FELTON & A. WRIGHT 1981: Insertion of DNA activates the cryptic bgl operon in E.coli Kl 2. Nature 293: 625-629. DOI: https://doi.org/10.1038/293625a0

RtESENFELD C., M. EvERETI, L.J.V. PIDDOCK & B.G. HALL 1997: Adaptive mutations produce resistance to ciprofloxacin. Antimicrob. Agents Chemoter. 41: 2059-2060. DOI: https://doi.org/10.1128/AAC.41.9.2059

RoscHE W. A. & P. L. FosTER 1999: The role of transient hypermutators in adaptive mutation in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 96: 6862-6867. DOI: https://doi.org/10.1073/pnas.96.12.6862

ROSENBERG S. M. 200 I: Evolving responsively: adaptive mutation. Nat. Rev. Genet. 2: 504-515. DOI: https://doi.org/10.1038/35080556

ROSENBERG S. M., C. THULIN & R. S. HARRIS 1998: Transient and heritable mutators in adaptive evolution in the lab and in nature. Genetics 148: 1559-1566. DOI: https://doi.org/10.1093/genetics/148.4.1559

RYAN F. J. & L. K. WAINWRIGHT 1954: Nuclear segregation and the growth of the clones of spontaneous mutants of bacteria. J. Gen. Microbial. 11: 364-379. DOI: https://doi.org/10.1099/00221287-11-3-364

RYAN F. J. 1955: Spontaneus mutations in non-dividing bacteria. Genetics 40: 726-738. DOI: https://doi.org/10.1093/genetics/40.5.726

SCHNEIDER D., E. DuPERCHY, E. CoURSANGE, R. E. LENSKI & M. BLOT 2000: Long-term experimental evolution in Escherichia coli. IX. Characterization of insertion sequence-mediated mutations and rearrangements. Genetics 156: 477-488. DOI: https://doi.org/10.1093/genetics/156.2.477

SHAPIRO J. A.& D. LEACH 1990: Action of a transposable element in coding sequence fusions. Genetics 126: 293-299. DOI: https://doi.org/10.1093/genetics/126.2.293

SHAPIRO J. A. 1984: Observations on the formation of clones containing araB-lacZ cistron fusions. Mol. Gen. Genet. 194: 79-90. DOI: https://doi.org/10.1007/BF00383501

SHAPIRO J. A. 1991: Genomes as smart systems. Genetica 84: 3-4. DOI: https://doi.org/10.1007/BF00123978

SHAPIRO J. A. 1992: Natural genetic engineering in evolution. Genetica 86: 99-111. DOI: https://doi.org/10.1007/BF00133714

SHAPIRO J. A. 1995: Adaptive mutation: Who's really in the garden? Science 268: 373-374. DOI: https://doi.org/10.1126/science.7716540

SHAPIRO J. A. 1997: Genome organization, natural genetic engineering and adaptive mutation. Trend Genet. 13(3): 98-104. DOI: https://doi.org/10.1016/S0168-9525(97)01058-5

SHAPIRO J. A. 1999a: Genome system architecture and natural genetic engineering in evolution. Ann. N.Y.Acad. Sci. 870: 23-35. DOI: https://doi.org/10.1111/j.1749-6632.1999.tb08862.x

SHAPIRO J. A. 1999b: Transposable elements as the key to a 21st century view of evolution. Genetica 107: 171-179 DOI: https://doi.org/10.1007/978-94-011-4156-7_19

SNIEGOWSKI P. D. 1995: A test of the directed mutation hypothesis in E.coli MCS2 using replica plating. J. Bacteriol. 177: 1119-1120. DOI: https://doi.org/10.1128/jb.177.4.1119-1120.1995

SoNCINI F. C. & E. A. GROISMAN 1996: Two component regulatory systems can interact to process multiple environmental signals. J. Bacteriol. 178: 6796-680 I. DOI: https://doi.org/10.1128/jb.178.23.6796-6801.1996

SrncK A. M., V. L. ROBINSON, P. N. GouDREAU 2000: Two-component signal transduction. Annu. Rev. Biochem. 69: 183-215. DOI: https://doi.org/10.1146/annurev.biochem.69.1.183

STRAUSS B. S. 1992: The origin of point mutations in human tumor cells. Cancer Res. 52: 249-253.

TADDEI F., 1. MATIC & M. RADMAN 1995: cAMP-dependent SOS induction and mutagenesis in resting bacterial populations. Proc. Natl. Acad. Sci. U. S. A. 92: 11736-11740. DOI: https://doi.org/10.1073/pnas.92.25.11736

TADDEI F., J.A. HALLIDAY, I. MATIC & M. RADMAN 1997: Genetic analysis of mutagenesis in aging E.coli colonies. Mo!. Gen. Genet. 256: 277-281. DOI: https://doi.org/10.1007/s004380050570

TANG M., P. PHAM, X. SHEN, J.S. TAYLOR, M. O'DoNNEL, R. WOODGATE& M.F. GOODMAN 2000: Roles of E.coli DNA polymerases IV and V in lesion-targeted and untargeted SOS mutagenesis. Nature 404: 1014-1018. DOI: https://doi.org/10.1038/35010020

TORKELSON J., R. s. HARRIS, M.J. LOMBARDO, J. NAGENDRAN, C. THULIN & S.M. ROSENBERG 1997: Genome-wide hypermutation in a sub-population of stationary-phase cells underlies recombination-dependent adaptive mutation. EMBO J. 16: 3303-3311. DOI: https://doi.org/10.1093/emboj/16.11.3303

VEScov1 E.G., Y. M. AYALA, E. D1 CERA & E.A. GROISMAN 1997: Characterization of the bacterial sensor protein PhoQ. Evidence for distinct binding sites for Mg2+ and Ca2+. J. Biol. Chem. 272: 1440-1443. DOI: https://doi.org/10.1074/jbc.272.3.1440

WAGNER J. & T. NoHMI 2000: Escherichia coli DNA polymerase N mutator activity: genetic requirements and mutational specificity. J. Bacteriol. 182: 4587-4595. DOI: https://doi.org/10.1128/JB.182.16.4587-4595.2000

WAGNER J., P. GRUZ, S. R. KIM, M. YAMADA, K. MATSUI, R.P. FucHs. & T. NoHMI 1999: The dinB gene encodes a novel E.coli DNA polymerase, DNA pol IV, involved in mutagenesis. Mo!. Cell. 4: 281-286. DOI: https://doi.org/10.1016/S1097-2765(00)80376-7

Downloads

Published

01.12.2002

Issue

Section

Original Research Paper

How to Cite

Krašovec, R., & Jerman, I. (2002). Adaptive mutation: shall we survive bacterial genetic skills?. Acta Biologica Slovenica, 45(2), 15-24. https://doi.org/10.14720/abs.45.2.16628

Funding data

Similar Articles

1-10 of 26

You may also start an advanced similarity search for this article.