Growth and root respiration of C4 plants under CO2 enrichment

Authors

  • Irena Maček University of Ljubljana, BF, Agronomy Dep., Jamnikarjeva 101, SI-1001 Ljubljana, Slovenia
  • Hardy Pfanz Institut fur Angewandte Botanik, Universitat Essen, D-45117 Essen, Geermany
  • Dominik Vodnik University of Ljubljana, BF, Agronomy Dep., Jamnikarjeva 101, SI-1001 Ljubljana, Slovenia

DOI:

https://doi.org/10.14720/abs.46.1.16642

Keywords:

root respiration, ETS activity, respiratory potential, C4 plants, elevated CO2, natural CO2 springs, CO2 mofette

Abstract

Respiratory measurements of apical root parts of several C4 plant species (Echinochloa crus-galli var. crus-galli, Setaria pumila and Zea mays DK 312 (Dekalb, USA) subjected to an elevated CO2 regime during growth in climatic chambers or at natural CO2 springs were performed. Biomass production, root respiratory potential and root respiration of Echinochloa was not significantly changed by high atmospheric CO2 treatment in the climatic chambers, compared to ambient CO2 treatment. Root respiratory potential of C4 weeds (Echinochloa crus-galli and Setaria pumila) growing in natural CO2 spring area was not significantly affected by extremely
high CO2 in the rhizosphere. Yet, respiratory potential of one and a half month old sown maize seedlings was significantly lower in the roots exposed to naturally elevated CO2 concentrations.

References

AMTHOR J. S. 1991: Respiration in a future, higher-CO world. Plant, Cell and Environment 14: 13-20. DOI: https://doi.org/10.1111/j.1365-3040.1991.tb01367.x

BADIANI M., RAscm A., PAOLACCI, A. R. & MrGLIEITA F. 1999: Plants responses to elevated CO ; a perspective from natural CO2 springs. In: AGRAWAL S. B. & AGRAWAL M. (ed.): Environmental Pollution And Plant Response, Lewis Pub., Boca Raton, pp. 45-81. DOI: https://doi.org/10.1201/9780203756935-4

BUCHANAN B. B., GRUISSEM W. & JoNES, R. L. (ED.) 2000: Biochemistry & molecular biology of plants. American Society of Plant Physiologists, Rockville, pp. 1177-1189.

BURTON. J., ZOGG G. P., PREGITZER K. S. & ZAK D. R 1997: Effect of measurement CO2 concentration on sugar maple root respiration. Tree Physiol. 17: 421-427. DOI: https://doi.org/10.1093/treephys/17.7.421

DRAKE B.G., GONZALEZ-MELER M.A. & LONG S.P. 1997: More efficient plants: a consequence of rising atmospheric CO2: Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 609-639. DOI: https://doi.org/10.1146/annurev.arplant.48.1.609

GHANNOUM 0., VON CAEMMERER S., ZISKA L. H. & CONROY J.P. 2000: The growth response of C4 plants to rising atmospheric CO2 partial pressure: a reassessment. Plant, Cell and Environ 23: 931-942. DOI: https://doi.org/10.1046/j.1365-3040.2000.00609.x

KALIGARIC M. 2001: Vegetation patterns and responses to elevated CO2 from natural CO2 springs at Strmec (Radenci, Slovenia). Acta Biologica Slovenica 44, 1-2: 31-38.

KENNER A. A. & AHMED S. I. 1975: Measurements of electron transport activities in marine phytoplankton. Mar. Biol. 33: 117-120. DOI: https://doi.org/10.1007/BF00390716

LAMBERS H., ATKIN O. K. & MILLENAAR F. F. 2002: Respiratory patterns in roots in relation to their functioning. In: Waisel Y., ESHEL A. & KAFKAFI U. (ed.): Plant Roots The Hidden Half, 3rd ed. Marcel Dekker, Inc., New York, pp. 521-552. DOI: https://doi.org/10.1201/9780203909423.pt6

LAMBERS H., STULEN I. & VAN DER WERF, A. 1996: Carbon use in root respiration as affected by elevated atmospheric CO2. Plant and Soil, 187: 251-263. DOI: https://doi.org/10.1007/BF00017091

RASCHIA., MIGLIETTA F., TOGNETTI R. & VAN GARDINGEN P.R. (ED.) 1997: Plant Responses to Elevated CO2. Cambridge University Press, Cambridge UK. DOI: https://doi.org/10.1017/CBO9780511565236

TJOELKER M.G., OLEKSYN J., LEE, T.D. & REICH, P. B. 2001: Direct inhibition of leaf dark respiration by elevated CO2 is minor in 12 grassland species. New Phytol. 150: 419-424. DOI: https://doi.org/10.1046/j.1469-8137.2001.00117.x

TURK B., PFANZ H., VODNIK D., BERNIK R., WITTMANNC., ŠINKOVIC T. & BATIČ F. 2002: The effects of elevated CO2 on bog rush (Juncus effusus L.) growing near natural CO2 springs I. Effects on shoot anatomy. Phyton (Hom - Austria) 42: 13-23.

VODNIK D., PFANZ H., MACEK I., KASTELEC D., LOJEN S. & BATIČ F. 2002: Photosynthetic performance of cockspur (Echinochloa crus-galli (L.) Beauv.) at sites of naturally elevated CO2 Photosynthetica 40(4): 575-579. DOI: https://doi.org/10.1023/A:1024308204086

VODNIK D., PFANZ H., WITTMANN C., MACEK I., KASTELEC D., TURK B. & BATIČ F. 2002: Photosynthetic acclimation in plants growing near a carbon dioxide spring. Phyton (Horn - Austria), 42: 239-244.

VODNIK D., SIRCEU H., KAsrELEC D., MACEK I., PFANZ H. & BATIČ F.: The effects of natural CO2 enrichment on the growth of maize. Journal of Crop Production, in press.

YODER C. K., VIVIB P., DEFALCO L.A., SEEMANN J. R. & NOWAK R. S. 2000: Root growth and function of three Mojave Desert grasses in response to elevated atmospheric CO2 concentration. New Phytol. 145: 245-256. DOI: https://doi.org/10.1046/j.1469-8137.2000.00576.x

YosHJOKA T., SATOH S. & YAMASUE Y. 1998: Effect of increased concentration of soil CO2 on intermittent flushes of seed germination in Echinochloa crus-galli var. crus-galli. Plant, Cell and Environment 21: 1301-1306. DOI: https://doi.org/10.1046/j.1365-3040.1998.00347.x

Z1sKA L. H. & BUNCE J. A. 1997: Influence of increasing carbon dioxide concentration on the photosynthetic and growth stimulation of selected C4 crops and weeds. Photosynth. Res. 54: 199-208.

Downloads

Published

01.07.2003

Issue

Section

Original Research Paper

How to Cite

Maček, I., Pfanz, H., & Vodnik, D. (2003). Growth and root respiration of C4 plants under CO2 enrichment. Acta Biologica Slovenica, 46(1), 35-39. https://doi.org/10.14720/abs.46.1.16642

Funding data

Similar Articles

1-10 of 129

You may also start an advanced similarity search for this article.