Organization of interphase microtubules and actin filaments in spruce callus cells after glutathione treatment
DOI:
https://doi.org/10.14720/abs.46.2.16666Keywords:
glutathione, spruce callus cells, microtubules, actin filamentsAbstract
Changes in the distribution of microtubules (MT) and actin filaments were examined in suspension-cultured spruce cells [Picea abies (L.) KARST.] that were exposed to different concentrations (500 and I 000 µM) of exogenously applied reduced glutathione (GSH). Using fluorescence microscopy the MT were visualized with monoclonal anti-tubulin antibodies and actin filaments were stained with rhodamin labelled phalloidin (RLP). GSH-treated callus cells showed modifications on the form and arrangement of both cytoskeletal elements, when compared to the control.
References
APoSTOLAKOS P. & B. GALATIS 1999: Microtubule and actin filament organization during stomata! morphogenesis in the fem Asplenium nidus. II. Guard cells. New Phytol. 141: 209-223. DOI: https://doi.org/10.1046/j.1469-8137.1999.00348.x
APOSTOLAKOS P., B. GALATIS, C. KATSAROS & E. SCHNEPF 1990: Tubulin conformation in microtubule free cells of Vigna sinensis - An immunofluorescent and electron microscope study. Protoplasma 154: 132-143. DOI: https://doi.org/10.1007/BF01539840
BARLOW P. W. & F. HALUSKA 2000: Cytoskeletal perspectives on root growth and morphogenesis. Annu. Rev. Plant Physiol. Plant Mo!. Biol. 51: 289-322. DOI: https://doi.org/10.1146/annurev.arplant.51.1.289
BINET M. N., C. HUMBERT, D. LECOURIEUX, M. VANTARD & A. PuGIN 2001: Disruption of microtubular cytoskeleton induced by cryptogein, an elicitor of hypersensitive response in tobacco cells. Plant Physiol. 125: 564-572. DOI: https://doi.org/10.1104/pp.125.2.564
CLEARY A. L. 1995: F-actin redistributions at the division site in living Tradescantia stomata! complexes as revealed by microinjection of rhodamine-phalloidin. Protoplasma 185: 152- 165. DOI: https://doi.org/10.1007/BF01272855
COLLINGS D. A. &A. M. C. EMONS 1999: Microtubule and actin filament organization during acentral divisions in potato suspension culture cells. Protoplasma 207: 158-168. DOI: https://doi.org/10.1007/BF01282996
CREISSEN G., J. FIRMIN, M. FRYER, B. KULAR, N. LEYLAND, H. REYNOLDS, G. PASTOR!, F. WELLBURN, N. BAKER, A. WELLBURN & P. MULLINEAUX 1999: Elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco plants paradoxically causes increased oxidative stress. Plant Cell 11: 1277-1291. DOI: https://doi.org/10.1105/tpc.11.7.1277
DAVIES E., B. STANKOVIC, K. AzAMA, K. SHIBATA & S. ABE 2001: Novel components of the plant cytoskeleton: a beginning to plant "cytomics". Plant Sci. 160: 185-196. DOI: https://doi.org/10.1016/S0168-9452(00)00365-4
DE RuuTER N. C. A. & A. M. C. EMONS 1999: Actin-binding proteins in plant cells. Plant Biol. 1: 26-35. DOI: https://doi.org/10.1111/j.1438-8677.1999.tb00705.x
FOYER CH. H. & H. RENNENBERG 2000: Regulation of glutathione synthesis and its role in abiotic and biotic stress defence. Sulfur Nut. and Sulfur Assim. in Higher Plants, pp.127-153.
HAsEZAWA S. & F. KUMAGAI 2002: Dynamic changes and the role of the cytoskeleton during the cell cycle in higher plant cells. Int. Rev. Cytol. 214: 161-191. DOI: https://doi.org/10.1016/S0074-7696(02)14005-8
JuNG G. & W. WERNICKE 1991: Patterns of actin filaments during cell shaping in developing mesophyll of wheat (Triticum aestivum L.). Eur. J. Cell Biol. 56: 139-146.
KANDASAMY M. K. & R. B. MEAGHER 1999: Actin-organelle interaction: association with chloroplast in Arabidopsis leaf mesophyll cells. Cell Motil. Cytoskel. 44: 110-118. DOI: https://doi.org/10.1002/(SICI)1097-0169(199910)44:2<110::AID-CM3>3.0.CO;2-O
KosT B., J. MATHUR & N. H. CHUA 1999: Cytoskeleton in plant development. Curr. Opin. Plant Biol. 2: 462-470. DOI: https://doi.org/10.1016/S1369-5266(99)00024-2
LAZZARO M. D. 1996: The actin microfilament network within elongating pollen tubes of the gymnosperm Picea abies (Norway spruce). Protoplasma 194: 18 194. DOI: https://doi.org/10.1007/BF01882026
MOLLER M., B. ZECHMANN, M. TAusz, K. BRENDLE & G. ZELLNIG 2001: Effects of exogenous glutathione on suspension callus cells of spruce [Picea abies (L.) Karst.]. Acta Bot. Croat. 60: 167-209.
MuRASHIGE T. & F. SKOOG 1962: A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15: 473-497. DOI: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
NICK P. 1999: Signals, motors, morphogenesis-the cytoskeleton in plant development. Plant Biol. 1: 169-179. DOI: https://doi.org/10.1111/j.1438-8677.1999.tb00240.x
OLYSLAEGERS G. & J. P. VERBELEN 1998: Improved staining of F-actin and co-localization of mitochondria in plant cells. J. Microscopy 192: 73-77. DOI: https://doi.org/10.1046/j.1365-2818.1998.00398.x
SANCHEZ-FERNANDEZ R., M. FRICKER, L. B. CORBEN, N. s. WHITE, N. SHEARD, C. J. LEAVER, M. VAN MoNTAGU, D. INZE & M. J. MAY 1997: Cell proliferation and hair tip growth in Arabidopsis root are under mechanistically different forms of redox control. Proc. Natl. Acad. Sci. USA 94: 2745-2750. DOI: https://doi.org/10.1073/pnas.94.6.2745
SIVAGURU M., Y. YAMOMOTO & H. MATSUMaro 1999: Differential impacts of aluminium on microtubule organisation depends on growth phase in suspension-cultured tobacco cells. Physiol. Plant. 107: 110-119. DOI: https://doi.org/10.1034/j.1399-3054.1999.100115.x
VOLKMANN D. & F. BALUSKA 1999: Actin cytoskeleton in plants: From transport networks to signaling networks. Microsc. Res. Techniq. 47: 135-154. DOI: https://doi.org/10.1002/(SICI)1097-0029(19991015)47:2<135::AID-JEMT6>3.0.CO;2-1
WICKS. M., R. W. SEAGULL, M. OSBORN, K. WEBER & B. E. S. GUNNING 1981: lmmunofluorescence microscopy of organized microtubule arrays in structurally stabilized meristematic plant cells. J. Cell Biol. 89: 685-690. DOI: https://doi.org/10.1083/jcb.89.3.685
WINGATE V. P. M., M. A. LAWTON & C. J. LAMP 1988: Glutathione causes a massive and selective induction of plant defence genes. Plant Physiol. 31: 205-211.
ZELLNIG G., M TAusz, B. PEsEc, D. GRILL & M. MDLLER 2000: Effects of glutathione on thiol redox systems, chromosomal aberrations and the ultrastructure of meristematic root cells of Picea abies (L.) Karst. Protoplasma 212: 227-235. DOI: https://doi.org/10.1007/BF01282923
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.