Diurnal variation of chloroplast tine structures of spinach
DOI:
https://doi.org/10.14720/abs.46.2.16670Keywords:
chloroplasts, serial sections, ultrastructure, volume, spinachAbstract
Complete chloroplasts and their fine structures were quantitatively analysed by means of ultrathin serial sections and digital image analysis in order to obtain precise ultrastructural data about diurnal adaptations of the organelles. During the daily course the average chloroplast volume increased from 31 µm3 in the morning to 44 µm3 in the evening. In the same time the absolute volumes of starch, thylakoids and plastoglobuli also increased, though to different extents. These observed differences in the diurnal behaviour of this organelles are essential for a precise evaluation of naturally occurring or stress induced changes in chloroplasts.
References
FORSCHNER W., V. SCHMITT & A. Wrw 1989: Investigations on the starch content and ultrastructure of spruce needles relative to the occurrence of Novel forest decline. Bot. Acta. 102: 208- 221. DOI: https://doi.org/10.1111/j.1438-8677.1989.tb00096.x
GRIFFIN K.L., O.R. ANDERSON, M.D. GASTRICH, J.D. LEWIS, G. LIN, W. SCHUSTER, J.R. SEEMANN, D.T. TISSUE, M.H. TURNBULL & D. WHITEHEAD 2001: Plant growth in elevated CO2 alters mitochondrial number and chloroplast fine structure. PNAS 98: 2473-2478. DOI: https://doi.org/10.1073/pnas.041620898
HOLOPAINEN T., s. ANTTONEN, V. PALOMAKI, P. KAINULAINEN & J.K. HOLOPAINEN 1996: Needle ultrastructure and starch content in scots pine and norway spruce after ozone fumigation. Can. J. Bot. 74: 67-76. DOI: https://doi.org/10.1139/b96-010
KESSLER F., D. SCHNELL & G. BLOBEL 1999: Identification of proteins associated with plastoglobules isolated from pea (Pisum sativum L.) chloroplasts. Planta 208: 107-113. DOI: https://doi.org/10.1007/s004250050540
RANTANEN L., V. PALOMAKI, A.F. HARRISON, P.W. LucAs & T.A. MANSFIELD 1994: Interactions between combined exposure to SO2 and NO2 and nutrient status of trees: effects on nutrient content and uptake, growth, needle ultrastructure and pigments. New Phytol. 128: 689-701. DOI: https://doi.org/10.1111/j.1469-8137.1994.tb04033.x
REY P., B. GILLET, S. R◊MER, F. EYMERY, J. MASSIMINO, G. PELTIER & M. KuNTZ 2000: Over-expression of a pepper plastid lipid-associated protein in tobacco leads to changes in plastid ultrastructure and plant development upon stress. Plant J. 21: 483-494. DOI: https://doi.org/10.1046/j.1365-313x.2000.00699.x
RoZAK P.R., R.M. SEISER, W.F. WACHOLTZ & R.R. WISE 2002: Rapid, reversible alterations in spinach thylakoid appression upon changes in light intensity. Plant Cell Environ. 25: 421-429. DOI: https://doi.org/10.1046/j.0016-8025.2001.00823.x
VOTHKNECHT U.C. & P. WESTHOFF 2001: Biogenesis and origin of thylakoid membranes. Biochim. Biophys. Acta 1541: 91-101. DOI: https://doi.org/10.1016/S0167-4889(01)00153-7
WHEELER W.S. & W.R. FAGERBERG 2000: Exposure to low levels of photosynthetically active radiation induces rapid increases in palisade cell chloroplast volume and thylakoid surface area in sunflower (Helianthus annuus L.). Protoplasma 212: 38-45. DOI: https://doi.org/10.1007/BF01279345
ZELLNIG G. & A. PERKTOLD 1999: Plant organelles analyzed by ultrathin serial-sections. Phyton 39: 65-68.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.