Rhizobacteria-Pseudomonas guguanensis SMHMZ4 Isolated from Mines Area Assists Green-Remediation of Cadmium by Brassica juncea: a Promising Environment Sustainable approach


  • Dr. Sarita Sharma Sarita sharma Department of Microbiology, Institute of Sciences, Humanities, and liberal studies (IISHLS), Indus University, Ahmedabad - 382115, Gujarat (India)




Rhizobacteria, heavy metal, phytoremediation, atomic absorption chromatography, bioconcentration factor, translocation factor


The aim of this study was to investigate how metal-tolerant rhizobacteria isolated from the mine area and landfill site influence the phytoremediation efficacy of B. juncea plants in metal-contaminated soils. Out of four cadmium-tolerant rhizobacteria, isolate SMHMZ4 showed the promising phytoextraction efficacy of B. juncea. Isolate SMHMZ4 was identified as Pseudomonas guguanensis and submitted to NCBI GenBank under accession number MZ145097. These rhizobia were reported for the first time to support metal-Cd phytoremediation using B. juncea. Compared with the non-inoculated control, SHMMZ4 treatment significantly improved the germination of B. juncea seeds and increased soluble heavy metals in soil by 7.78 times. Growth and health parameters, pigment and metal accumulation in roots and shoots of isolate SHMMZ4 inoculated B. juncea grown in individual soil contaminated with 94.95 μg g-1 CdCl2 were significantly increased. Pot experiments showed that SHMMZ4 could transfer heavy metals from soil to roots, from roots to shoots and the values of translocation coefficient, bioconcentration coefficient, and bioaccumulation coefficient were 1.28, 1.22, and 1.72, respectively, which were significantly higher than the non-inoculated control. In the present study it is demonstrated that the amendments of rhizobacteria to B. juncea is believed to be a more promising method for green remediation of cadmium.


Ali, A., Guo, D., Li, Y., Shaheen, S. M., Wahid, F., Antoniadis, V., ... & Zhang, Z. (2021). Streptomyces pactum addition to contaminated mining soils improved soil quality and enhanced metals phytoextraction by wheat in a green remediation trial. Chemosphere, 273, 129692. https://doi.org/10.1016/j.chemosphere.2021.129692

Amin, H., Arain, B. A., Jahangir, T. M., Abbasi, M. S., & Amin, F. (2018). Accumulation and distribution of lead (Pb) in plant tissues of guar (Cyamopsis tetragonoloba L.) and sesame (Sesamum indicum L.): profitable phytoremediation with biofuel crops. Geology, Ecology, and landscapes, 2(1), 51-60. https://doi.org/10.1080/24749508.2018.1452464

Antoniadis, V., Shaheen, S. M., Stärk, H. J., Wennrich, R., Levizou, E., Merbach, I., & Rinklebe, J. (2021). Phytoremediation potential of twelve wild plant species for toxic elements in a contaminated soil. Environment International, 146, 106233. https://doi.org/10.1016/j.envint.2020.106233

Aransiola S. A., Ijah U. J. J., Abioye O.P., Bala J. D., 2019. Microbial –aided phytoremediation of heavy metals contaminants soil: a review. Eur. J. Biol. Res. 9(2):104-125. http://dx.doi.org/10.5281/zenodo.3244176

Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and soil, 39(1), 205-207. https://doi.org/10.1007/BF00018060

Dabhi J., Solanki A., Patel R., Sharma S., Saraf M.S., (2021). Bioremediation of Heavy Metals: A brand New Methodology to Sustainable Agriculture. International Journal of Innovative Research in Science, Engineering and Technology, 10(6), 6031-6049. DOI:10.15680/IJIRSET.2021.1006033.

Din, B. U., Rafique, M., Javed, M. T., Kamran, M. A., Mehmood, S., Khan, M., ... & Chaudhary, H. J. (2020). Assisted phytoremediation of chromium spiked soils by Sesbania Sesban in association with Bacillus xiamenensis PM14: a biochemical analysis. Plant physiology and biochemistry, 146, 249-258. https://doi.org/10.1016/j.plaphy.2019.11.010

Edulamudi, P., Johnson Anthony Masilamani, A., Ramana Sai Gopal Divi, V., Zakkula, V., Rao Vanga, U., & Mallaiah Konada, V. (2019). Symbiotic efficiency, biosorption and the growth of rhizobia on Horse gram plants under aluminium stress. Acta Biologica Slovenica, 62(1), 77-86. https://doi.org/10.14720/abs.62.1.15737.

Ekoa Bessa, A. Z., Ngueutchoua, G., Kwewouo Janpou, A., El-Amier, Y. A., Njike Njome Mbella Nguetnga, O. A., Kankeu Kayou, U. R., ... & Armstrong-Altrin, J. S. (2021). Heavy metal contamination and its ecological risks in the beach sediments along the Atlantic Ocean (Limbe coastal fringes, Cameroon). Earth Systems and Environment, 5(2), 433-444. https://doi.org/10.1007/s41748-020-00167-5.

He H, Ye Z, Yang D, Yan J, Xiao L, Zhongb T. 2013. Characterization of endophytic Rahnella sp.JN6 from Polygonumpubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Chemosphere 90: 1960-1965. https://doi.org/10.1016/j.chemosphere.2012.10.057

Jeyasundar, P. G. S. A., Ali, A., Azeem, M., Li, Y., Guo, D., Sikdar, A., ... & Zhang, Z. (2021). Green remediation of toxic metals contaminated mining soil using bacterial consortium and Brassica juncea. Environmental Pollution, 277, 116789. https://doi.org/10.1016/j.envpol.2021.116789

Jiang, C. Y., Sheng, X. F., Qian, M., & Wang, Q. Y. (2008). Isolation and characterization of a heavy metal-resistant Burkholder sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere, 72(2), 157-164. https://doi.org/10.1016/j.chemosphere.2008.02.006

Jinal, H. N., Gopi, K., Pritesh, P., Kartik, V. P., & Amaresan, N. (2019). Phytoextraction of iron from contaminated soils by inoculation of iron-tolerant plant growth-promoting bacteria in Brassica juncea L. Czern. Environmental Science and Pollution Research, 26(32), 32815-32823. https://doi.org/10.1007/s11356-019-06394-2

Kaur, R., Bhatti, S. S., Singh, S., Singh, J., & Singh, S. (2018). Phytoremediation of heavy metals using cotton plant: a field analysis. Bulletin of environmental contamination and toxicology, 101(5), 637-643. https://doi.org/10.1007/s00128-018-2472-8

Khanna, K., Jamwal, V. L., Sharma, A., Gandhi, S. G., Ohri, P., Bhardwaj, R., ... & Ahmad, P. (2019). Supplementation with plant growth promoting rhizobacteria (PGPR) alleviates cadmium toxicity in Solanum lycopersicum by modulating the expression of secondary metabolites. Chemosphere, 230, 628-639. https://doi.org/10.1016/j.chemosphere.2019.05.072

Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical society transactions, 11, 591-592

Lindsay, W.L., Norvell, W.A. (1978): Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of American Journal 42: 421–428. https://doi.org/10.2136/sssaj1978.03615995004200030009x

Mendoza-Hernández, J. C., Vázquez-Delgado, O. R., Castillo-Morales, M., Varela-Caselis, J. L., Santamaría-Juárez, J. D., Olivares-Xometl, O., ... & Pérez-Osorio, G. (2019). Phytoremediation of mine tailings by Brassica juncea inoculated with plant growth-promoting bacteria. Microbiological research, 228, 126308. https://doi.org/10.1016/j.micres.2019.126308

Nain, L., Yadav, R. C., & Saxena, J. (2012). Characterization of multifaceted Bacillus sp. RM-2 for its use as plant growth promoting bioinoculant for crops grown in semi arid deserts. Applied soil ecology, 59, 124-135. https://doi.org/10.1016/j.apsoil.2011.08.001

Ndeddy Aka, R. J., & Babalola, O. O. (2016). Effect of bacterial inoculation of strains of Pseudomonas aeruginosa, Alcaligenes faecalis and Bacillus subtilis on germination, growth and heavy metal (Cd, Cr, and Ni) uptake of Brassica juncea. International journal of phytoremediation, 18(2), 200-209. https://doi.org/10.1080/15226514.2015.1073671

Rajkumar, M., & Freitas, H. (2008). Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Chemosphere, 71(5),834-842. https://doi.org/10.1016/j.chemosphere.2007.11.038

Rathod Zalak R, Sarita S, Saraf M. S. (2021) Endophytic Bacterial Effects on Seed as Enhancement in Germination with Mobilization of Reserves and Microbial Disinfection in Citrus Limon (L) by Biopriming Under Salinity Stress. Curr Trends Biomedical Eng & Biosci. 2021; 20(2): 556033. DOI: 10.19080/CTBEB.2021.20.556033

Rathore, S. S., Shekhawat, K., Dass, A., Kandpal, B. K., & Singh, V. K. (2019). Phytoremediation mechanism in Indian mustard (Brassica juncea) and its enhancement through agronomic interventions. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 89(2), 419-427. https://doi.org/10.1007/s40011-017-0885-5

Rochlani A., Dalwani A., Shaikh N.B., Shaikh N., Sharma S., and Saraf M. S., (2022). Plant Growth Promoting Rhizobacteria as Biofertilizers: Application in Agricultural Sustainability". Acta Scientific Microbiology, 5(4): 12-21.

Rostami, S., & Azhdarpoor, A. (2019). The application of plant growth regulators to improve phytoremediation of contaminated soils: A review. Chemosphere, 220, 818-827. https://doi.org/10.1016/j.chemosphere.2018.12.203

Sadiq, R., Maqbool, N., & Haseeb, M. (2017). Ameliorative effect of chelating agents on photosynthetic attributes of Cd stressed sunflower. Agricultural Sciences, 8(02), 149. https://doi.org/10.4236/as.2017.82010

Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular biology and evolution, 4(4), 406-425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

Saraf, M., Sharma, S., Thakkar, A., (2017). Production and optimization of siderophore from plant growth promoting Rhizobacteria, Scholar press, 1-85.

Shaikh N. B., Shaikh N., Rochlani A., Dalwani A., Sharma S. and Saraf M. S., (2022). Rhizobacteria that Promote Plant Growth and their Impact on Root System Architecture, Root Development, and Function. Acta Scientific Microbiology 5(4): 53-62. https://actascientific.com/ASMI/pdf/ASMI-05-1035.pdf

Sharma S., Parihar N., Dabhi J., Saraf M. (2021a). Phytomining of Heavy Metals: A Green Technology to Sustainable Agriculture. International Journal of Innovative Research in Science, Engineering and Technology, 10 (6), 7527-7538. DOI:10.15680/IJIRSET.2021.1006278.

Sharma S., Rathod Z. R., and Saraf M., (2023d). Consequence of Gibberellic Acid Produced from Metal Tolerant Rhizobacteria Isolated from Mines and Dumpsites on B. juncea published as book chapter in Emerging Strategies in Research Going beyond Disciplinary Boundaries, published by Allied Publisher Private limited.

Sharma S., Saraf M., (2022a). Isolation, Screening and Biochemical characterizations with multiple traits of Heavy Metal Tolerant Rhizobacteria from Mining Area and Landfill site. Advances in Bioresearch, 13 (1), 147-156.

Sharma S., Shah R. K., Rathod Z. R., Jain R., Lucie K.M, Saraf M., (2020). Isolation of Heavy Metal Tolerant Rhizobacteria from Zawar Mines Area, Udaipur, Rajasthan, India. Bioscience Biotechnology Research Communication, 13 (1), 233-238. Doi: http://dx.doi.org/10.21786/bbrc/13.1special issue/01

Sharma Sarita, Rathod Zalak R, Saraf M. S., (2021b). Elucidate the Influence of Heavy Metal on Bacterial Growth Isolated from a Mining Location and A Waste Dump: Using their Inducible Mechanism. Curr Trends Biomedical Eng & Biosci., 20(2), 001-006. DOI: 10.19080/CTBEB.2021.20.556034

Sharma, I. (2020). Bioremediation techniques for polluted environment: concept, advantages, limitations, and prospects. In Trace Metals in the Environment-New Approaches and Recent Advances. IntechOpen.

Sharma, S., & Saraf, M. (2023c). Biofilm-forming plant growth-promoting rhizobacterial consortia isolated from mines and dumpsites assist green remediation of toxic metal (Ni and Pb) using Brassica juncea. Biologia Futura, 74(3), 309-325. https://doi.org/10.1007/s42977-023-00179-y

Sharma, S., & Saraf, M., (2023b). Enhanced exopolysaccharide production by multi metal tolerant Klebsiella variicolaSMHMZ46 isolated from mines area and application in metal bioremediation. International Microbiology, 1-17. https://doi.org/10.1007/s10123-023-00366-w

Sharma, S., Rathod, Z. R., Jain, R., Goswami, D., & Saraf, M. (2023a). Strategies to Evaluate Microbial Consortia for Mitigating Abiotic Stress in Plants. Sustainable Agrobiology: Design and Development of Microbial Consortia, 43, 177-203, Springer, Singapore. https://doi.org/10.1007/978-981-19-9570-5_9

Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144-158. https://www.ajevonline.org/content/16/3/144.short

Sullivan, T. S., & Gadd, G. M. (2019). Metal bioavailability and the soil microbiome. In Advances in agronomy (Vol. 155, pp. 79-120). Academic Press. https://doi.org/10.1016/bs.agron.2019.01.004

Wang, Q., Zhou, Q., Huang, L., Fu, Y., Hou, D., Feng, Y., & Yang, X. (2022). Cadmium phytoextraction through Brassica juncea L. under different consortia of plant growth-promoting bacteria from different ecological niches. Ecotoxicology and Environmental Safety, 237, 113541. https://doi.org/10.1016/j.ecoenv.2022.113541

Ying, R., Xia, B., Zeng, X., Qiu, R., Tang, Y., & Hu, Z. (2021). Adsorption of Cadmium by Brassica juncea (L.) Czern. and Brassica pekinensis (Lour.) Rupr in Pot Experiment. Sustainability, 14(1), 429. https://doi.org/10.3390/su14010429

Zainab, N., Din, B. U., Javed, M. T., Afridi, M. S., Mukhtar, T., Kamran, M. A., ... & Chaudhary, H. J. (2020). Deciphering metal toxicity responses of flax (Linum usitatissimum L.) with exopolysaccharide and ACC-deaminase producing bacteria in industrially contaminated soils. Plant Physiology and Biochemistry, 152, 90-99. https://doi.org/10.1016/j.plaphy.2020.04.039

Zhang, X., Su, C., Liu, X., Liu, Z., Liang, X., Zhang, Y., & Feng, Y. (2020). Effect of plant-growth-promoting rhizobacteria on phytoremediation efficiency of Scirpus triqueter in pyrene-Ni co-contaminated soils. Chemosphere, 241, 125027. https://doi.org/10.1016/j.chemosphere.2019.125027.

Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food chemistry, 64(4), 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2.






Original Research Paper

How to Cite

Sarita sharma, D. S. S. (2024). Rhizobacteria-Pseudomonas guguanensis SMHMZ4 Isolated from Mines Area Assists Green-Remediation of Cadmium by Brassica juncea: a Promising Environment Sustainable approach. Acta Biologica Slovenica, 67(1), 20-34. https://doi.org/10.14720/abs.67.1.18608

Similar Articles

1-10 of 32

You may also start an advanced similarity search for this article.