Exploring the trichloroacetic acid-induced toxicity on the hepato-renal system and intervention by virgin coconut oil-rich diet
DOI:
https://doi.org/10.14720/abs.67.2.18642Keywords:
Virgin coconut oil , liver, kidney, inflammation, apoptosis, oxidative stressAbstract
Virgin coconut oil (VCO) is known for many beneficial health effects associated with its phenolic acids and flavonoid contents. We investigated the mechanisms underlying the antioxidative, anti-inflammatory, and anti-apoptotic mechanisms of Virgin Coconut oil-rich diet in treating trichloroacetic acid (TCA)-induced hepatic and renal damage in rats. Rats received TCA (250 mg/Kg b.wt, p.o) for ten days, followed by 5%, 10% or 15% VCO per gram feed for twenty-one days. Serum liver enzymes, urea, creatinine, tissue oxidative stress parameters, and inflammatory and apoptotic markers were then evaluated along with histological examination. TCA raised serum transaminases (ALT, AST), alkaline phosphatase (ALP), total bilirubin, urea and creatinine levels, which were abrogated by a VCO-rich diet dose-dependently. The activity of superoxide dismutase, catalase, glutathione peroxidase and nuclear factor erythroid 2-related factor 2 in the liver and kidney were enhanced, while malondialdehyde, tumour necrosis factor-α, interleukin-1β, nuclear factor-kB level hitherto increased by TCA were quashed by the VCO- rich diet (p<0.05). Similarly, the augmented level of Caspase-3 in the organs exposed to TCA was downregulated in favour of significantly increased BCl-2. Further, histomorphometry data validated the biochemical findings observed for the anti-inflammatory and anti-apoptotic potentials of VCO. Hepatocyte ballooning, pleomorphism and vascular congestion in the liver, loss of tubular architecture, tubular congestion and leukocyte infiltration in the kidney, all occasioned by TCA-intoxication, were evidently mitigated. Virgin coconut oil-rich diet could ameliorate liver and renal injury associated with trichloroacetic acid exposure via antioxidative, anti-inflammatory and anti-apoptotic mechanisms.
References
Abdel-Hamid, N., Fawzy, M., El-Moselhy, M., 2011. Evaluation of hepatoprotective and anticancer properties of aqueous olive leaf extract in chemically induced hepatocellular carcinoma in rats. Am J Med Med Sci., 1:15–22.
Acharya, S., Mehta, K., Rodriguez, S., Pereira, J.,, Krishnan S., Rao, C.V., 1997. A histopathological study of liver and kidney in male Wistar rats treated with subtoxic doses of t-butyl alcohol and trichloroacetic acid. Exp Toxicol Path., 49:369–373.
Alzergy, A.A.A., Haman, M.R,, Shushni, M.A., Almagtouf, F.A., 2018. Phyto-pharmaceuticals and biological study on graviola (Annona muricata L.) fruit and dietary supplement of graviola sold on the Libyan market as a cancer cure against TCA induce hepatotoxicity in mice. Cancer Biol., 8:1-23.
Alshehri, A.S., El-Kott, A.F., El-Kenawy, A.E., Zaki, M.S.A., Morsy, K., Ghanem, R.A., et al., 2022. The ameliorative effect of kaempferol against CdCl2-mediated renal damage entails activation of Nrf2 and inhibition of NF-kB. Environ Sci Pollut Res., 29:57591–57602
Aparicio-Trejo, O.E., Reyes-Fermín, L.M., Briones-Herrera, A., Tapia, E., León-Contreras, J.C., Hernández-Pando, R., et al., 2019. Protective Effects of N-Acetyl-Cysteine in Mitochondria Bioenergetics, Oxidative Stress, Dynamics and S-Glutathionylation Alterations in Acute Kidney Damage Induced by Folic Acid. Free Radic. Biol. Med., 130:379–396.
Aranda-Rivera, A.K., Cruz-Gregorio, A., Aparicio-Trejo, O.E., Pedraza-Chaverri, J., 2021. Mitochondrial Redox Signaling and Oxidative Stress in Kidney Diseases. Biomolecules, 11:1144.
Aranda-Rivera, A.K., Cruz-Gregorio, A., Pedraza-Chaverri, J., Scholze, A., 2022. Nrf2 Activation in Chronic Kidney Disease: Promises and Pitfalls. Antioxidants, 11:1112
Aslani, H., Hosseini, M.S., Mohammadi, S., Naghavi-Behzad, M., 2019. Drinking Water Disinfection By-products and Their Carcinogenicity: A Review of Unseen Crisis. Int. J.Cancer Manag., 12(5), e88920.
Austin, E.W., Parrish, J.M., Kinder, D.H., Bull, R.J., 1996. Lipid peroxidation and formation of 8-hydroxydeoxyguanosine from acute doses of halogenated acetic acids. Fund Appl Toxicol., 31:77–82
Buderwitz, P., 2013. Health risks and benefits of coconut oil. Pharm Today, 19(11): 27.
Canbay, A., Feldstein, A.E., Higuchi, H, Werneburg, N., Grambihler, A., Bronk, S.F., et al., 2003. Kupffer Cell Engulfment of Apoptotic Bodies Stimulates Death Ligand and Cytokine Expression. Hepatol., 38:1188-98
Celik, I., Temur, A., Isik, I., 2009. Hepatoprotective role and antioxidant capacity of pomegranate (Punica granatum) flowers infusion against trichloroacetic acid-exposed in rats. Food Chem Toxicol., 47:145–149
Celik, I., Tuluce, Y., 2007. Elevation protective role of Camellia sinensis and Urtica dioica infusion against trichloroacetic acid-exposed in rats. Phytother Res., 21:1039–1044
Celik, I., Isik, I., Kaya, M.S., 2010. Evaluation of neurotoxic and immunotoxic effects of trichloroacetic acid on rats. Tox. Ind. Health., 26(10): 725-731.
Claiborne, A., 1995. Catalase activities. In: Greewald, A.R. (ed.). Handbook of methods for oxygen Radical research. Florida: CRC Press: 237-242.
Colombo, F., Zambrano, S., Agresti, A., 2018. NF-kappaB, the importance of being dynamic: role and insights in cancer. Biomedicines, 6:45.
Colomer, C., Marruecos, L., Vert, A., Bigas, A., Espinosa, L., 2017. NF-κB Members Left Home: NF-κB-Independent Roles in Cancer. Biomedicines, 5:26.
Cory, S., Adams, J.M., 2002. The Bcl2 family: regulators of the cellular life-or-death switch. Nat. Rev. Cancer., 2:647–656.
Courtois, G., Fauvarque, M.O., 2018. The many roles of ubiquitin in NF-kappaB signaling. Biomedicines, 6: 43.
Cuadrado, A., Martín-Moldes, Z., Ye, J., Lastres-Becker, I., 2014. Transcription Factors NRF2 and NF-Κb Are Coordinated Effectors of the Rho Family, GTP-Binding Protein RAC1 during Inflammation. J. Biol. Chem., 289: 15244–15258.
Culloch, A.M.C., 2002. Trichloroacetic acid in the environment. Chemosphere, 47:667–686
Danial, N.N., Korsmeyer, S.J., 2004. Cell death: critical control points. Cell, 116:205–219
Deng, J.S., Jiang, W.P., Chen, C.C., Lee, L.Y., Li,. PY., Huang, W.C., et al., 2020. Cordyceps cicadae Mycelia Ameliorate Cisplatin-Induced Acute Kidney Injury by Suppressing the TLR4/NF-κB/MAPK and Activating the HO-1/Nrf2 and Sirt-1/AMPK Pathways in Mice. Oxidative Medicine and Cellular Longevity, 7912763. https://doi.org/10.1155/2020/7912763
Dodson, M., de la Vega, M.R., Cholanians, A.B., Schmidlin, C.J., Chapman, E., Zhang, D,D., 2019. Modulating NRF2 in Disease: Timing Is Everything. Annu. Rev. Pharmacol. Toxicol., 59:555–575.
Doulias, P.T., Tenopoulou, M., Greene, J.L., Raju, K., Ischiropoulos, H., 2013. Nitric Oxide Regulates Mitochondrial Fatty Acid Metabolism Through Reversible Protein S-Nitrosylation. Sci. Signal., 6:rs1. 10.1126/scisignal.2003252
El Arem, A., Zekri, M., Thouri, A., Saafi, E.B., Ghrairi, F., Ayed, A., et al., 2013. Oxidative damage and alterations in antioxidant enzyme activities in the kidneys of rat exposed to trichloroacetic acid: Protective role of date palm fruit. J Physiol Biochem., 70:297-309.
EPA (US Environmental Protection Agency), 2011. IRIS Toxicological Review of Trichloroethylene (Interagency Science Discussion Draft). Available: http://cfpub.epa.gov/ ncea/iris_drafts/recordisplay.cfm?deid=237625.
Fischer, T., Perosino, E., Poli, F., Viera, M., Dreno, B., 2010. Chemical peels in aesthetic dermatology: an update 2009. J Euro Acad Dermatol Ven., 24(3):281–292.
Fouad, A.A., Al-Mulhim, A.S., Jresat, I., 2013. Therapeutic effect of coenzyme Q10 against experimentally-induced hepatocellular carcinoma in rats. Environ Toxicol Pharmacol., 35(1):100–108
Gisder, D.M., Tannapfel, A., Tischoff, I., 2022. Histopathology of hepatocellular carcinoma - when and what. Hepatoma. Res., 8:4. http://dx.doi.org/10.20517/2394-5079.2021.106
Gissen, P., Arias, I.M., 2015. Structural and functional hepatocyte polarity and liver disease. J. Hepatol., 63 (4), 1023-1037.
Goldberg, S.J., Lebowitz, M.D., Graver, E.J., Hicks, S., 1990. An association of human congenital cardiac malformations and drinking water contaminants. J. Am. Coll. Cardiol., 16:155–164
Granger, D.N., Kvietys, P.R., 2015. Reperfusion injury and reactive oxygen species: the evolution of a concept. Redox Biol., 6: 524-551.
Harmon, C.B., Hadley, M., Tristani, P., 2011. Trichloroacetic acid. In: Color atlas of chemical peels. 33–40. Springer.
Hartono, S.B., Sari, Y., Novika, R.G.H., Avicena, A., 2022. The effect of Curcumin and virgin coconut oil towards cytokines levels in COVID-19 patients at universitas Sebelas Maret Hospital, Surakarta, Indonesia. Pharmacogn J., 14:216-225
Huang, L., Lizak, P., Dvorak, C.C., Aweeka, F., Long-Boyle,, J. 2014. Simultaneous determination of fludarabine and clofarabine in human plasma by LC-MS/MS. J. Chromatog., 960:194–199.
Ibrahim, M.A., Ghazali, N.F., Mustafa, F.F., Tengku Muhammad, T.S., 2020. Virgin Coconut Oil as Antioxidant and Treatment on Metabolic Disorders: A Short Review. Int J Allied Health Sci., 4: 602–1607.
Institute for Laboratory Animal Research (ILAR). 2011. Guide for the Care and Use of Laboratory Animals 8th edn. (National Academies Press, Washington, DC).
Irazabal, M.V., Torres, V.E., 2020. Reactive Oxygen Species and Redox Signaling in Chronic Kidney Disease. Cells, 9:1342.
Johnson, P.D., Goldberg, S.J., Mays, M.Z., Dawson, B.V., 2003. Threshold of trichloroethylene contamination in maternal drinking waters affecting fetal heart development in the rat. Environ. Health Perspect., 111, 289–292
Kabara, J., 2020. Health Oils from the Tree of Life (Nutritional and Health Aspects of Coconut Oil). In: Asian and Pacific Coconut Community (APCC). Asian and Pacific Coconut Community (APCC) COCOTECH Meeting, India.
Kang, D.H., Nakagawa, T., Feng, L., Watanabe, S., Han, L., Mazzali, M., et al., 2002. A role for uric acid in the progression of renal disease. J. Am. Soc. Nephrol., 13:2888–2897
Karimi-Jaberi, Z., Moaddeli, M.S., 2012. Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones and Their Corresponding 2(1H)Thiones Using Trichloroacetic Acid as a Catalyst under Solvent-Free Conditions. International Scholarly Research Notices, 474626. https://doi.org/10.5402/2012/474626
Kaspar, J.W., Niture, S.K., Jaiswal, A.K., 2009. Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic. Biol. Med., 47:1304–1309.
Keleku-Lukwete, N., Suzuki, M., Yamamoto, M., 2018. An Overview of the Advantages of KEAP1-NRF2 System Activation during Inflammatory Disease Treatment. Antioxid. Redox Signal., 29(17), 1746–1755.
Lala, V., Zubair, M., Minter, D.A., 2023. Liver Function Tests. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; https://www.ncbi.nlm.nih.gov/books/NBK482489/
Li, G.M., Chen, J.R., Zhang, H.Q., Cao, X.Y., Sun, C., Peng, F., et al., 2021. Update on Pharmacological Activities, Security, and Pharmacokinetics of Rhein. Evidence-Based Complementary and Alternative Medicine, Article ID 4582412, 18 pp. https://doi.org/10.1155/2021/4582412
Liebman, S.E., Le, T.H., 2021. Eat Your Broccoli: Oxidative Stress, NRF2, and Sulforaphane in Chronic Kidney Disease. Nutrients, 13:266. doi: 10.3390/nu13010266.
Liu, D., Shang, H., Liu,, Y. 2016. Stanniocalcin-1 protects a mouse model from renal ischemia-reperfusion injury by affecting ROS-mediated multiple signaling pathways. Int. J. Mol. Sci., 17: 1051.
Marina, A.M., Che Man, Y.B., Nazimah,. .SAH., Amin, I., 2009. Chemical properties of virgin coconut oil. J. Amer Oil Chem.. Soc., 86: 301-307
Michael, J., Sircar, S., 2010. Chronic renal failure. In: Michael J (ed) Fundamentals of medical Physiology, 1st ed. Thieme Medical, New York, 2010. 633 pp.
Misra, H.P., Fridovich, I., 1972. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem., 247(10): 3170–3175.
Mohan, T., Narasimhan, K.K.S., Ravi, D.B., Velusamy, P., Chandrasekar, N., Chakrapani, L.N,, et al., 2020. Role of Nrf2 dysfunction in the pathogenesis of diabetic nephropathy: Therapeutic prospect of epigallocatechin-3-gallate. Free Rad. Biol. Med., 160:227-238.
Mokhamer, E.H.M., Zidan, A.A.A., El Ghayesh, N.K., Abdel-Aziz, K.K., 2022. Attenuation of trichloroacetic acid-induced hepatocellular carcinoma by Artemisia judaica ethanolic extract in male rats. J. Bas. Appl. Zool., 83:2.
Morris, E.D., Bost, J.C., 2002. Acetic acid, halogenated derivatives. In: Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons Publishing, Hoboken, NJ. 136-146.
Niture, S.K., Jaiswal, A.K., 2011. INrf2 (Keap1) targets Bcl-2 degradation and controls cellular apoptosis. Cell Death Differ., 18, 439–451.
Niture, S.K., Jaiswal, A.K., 2012. Nrf2 Protein Up-regulates Anti-apoptotic Protein Bcl-2 and Prevents Cellular Apoptosis. J. Biol. Chem., 287:9873-9886.
O’Neil, M.J., Heckelman, P.E., Roman, C.B., 2006. The Merck Index, 14th Edition. Whitehouse Station, NJ: Merck & Co.
Paiva, C.N., Medei, E., Bozza, M.T., 2018. ROS and trypanosoma cruzi: fuel to infection, poison to the heart. PLoS Pathog., 14: e1006928.
Pereira, M.A., Kramer, P.M., Conran, P.B., Tao, L., 2001. Effect of chloroform on dichloroacetic acid and trichloroacetic acid-induced hypomethylation and expression of the c-myc gene and on their promotion of liver and kidney tumors in mice. Carcinog., 22:1511–1519.
Pinegin, B., Vorobjeva, N., Pashenkov, M., Chernyak, B., 2018. The role of mitochondrial ROS in antibacterial immunity. J. Cell Physiol., 233: 3745-3754.
Raghavendra, S.N., Raghavarao, K., 2010. Effect of different treatments for the destabilization of coconut milk emulsion. J. Food Eng., 97: 341–347.
Saad, A.A., Mokhamer, E.H.M., Mohsen, M.A.A., Fadaly, G.A., 2014. Attenuation of carbon tetrachloride-induced hepatic fibrosis by glycine, vitamin E, and vitamin C. J. Exp. Integ. Med., 4 (3):181.
Schultz, I.R., 1999. Comparative toxicokinetics of chlorinated and brominated haloacetates in F344 rats. Toxicol. Appl. Pharmacol., 158(2):103–114.
Serhan, C.N., Dalli, J., Karamnov, S., Choi, A., Park, C.K., Xu, Z.Z., et al., 2012. Macrophage proresolving mediator maresin 1 stimulates tissue regeneration and controls pain. FASEB J., 26:1755–1765.
Shih, R.H., Wang, C.Y., Yang, C.M., 2015. NF-kappaB Signaling Pathways in Neurological Inflammation: A Mini Review. Front. Mol. Neurosci., 8:1-8.
Singer, P.C., Obelensky, A., Griner, A., 1995. DBPs in chlorinated North Carolina drinking waters. J. Am. Water Works Assoc., 87:83–92.
Sitohang, I.B.S., Legiawati, L., Suseno, L.S., Safira, F.D., 2021. Trichloroacetic Acid Peeling for Treating Photoaging: A Systematic Review. Dermatology Research and Practice, vol. 2021, Article ID 3085670. https://doi.org/10.1155/2021/3085670
Spray, D.C., Hanstein, R., Lopez-Quintero, S.V., Stout Jr., R.F., Suadicani, S.O., Thi, M.M., 2013. Gap junctions and bystander effects: good Samaritans and executioners. Wiley Interdiscip Rev Memb Transp Signal. 2:1–15.
Srinivasan, R., Chandrasekar, M.J.N., Nanjan, M.J., Suresh, B., 2007. Antioxidant activity of Caesalpinia digyna root. J. Ethnopharmacol., 113:284–291
Varshney, R., Kale, R.K., 1990, Effect of calmodulin antagonists on radiation induced lipid peroxidation in microsomes, Int. J. Biol., 158:733–741.
Wang, K., Lin, B., 2013. Pathophysiological Significance of Hepatic Apoptosis. Int. Sch. Res. Notices, 740149. doi: 10.1155/2013/740149.
Weast, R.C., Astle, M.,J. 1985. CRC Handbook of Data on Organic Compounds, Volumes I and II. Boca Raton, Florida: CRC Press.
Toprak, T., Sekerci, C.A., Aydın, H.R., 2020. Protective effect of chlorogenic acid on renal ischemia/reperfusion injury in rats. Archivio Italiano di Urologia, Andrologia, 92:153–155.
Yeap, S.K., Beh, B.K., Ali, N.M., Yusof, H.M., Ho, W.Y., Koh, S.P., et al., 2015. Anti-stress and antioxidant effects of virgin coconut oil in vivo. Exp. Therap. Med., 9:39-42.
Yu, K.O., Barton, H.A., Mahle, D.A., Frazier, J.M., 2000. In vivo kinetics of trichloroacetate in male Fischer 344 rats. Toxicological Sci., 54:302–311.
Zakaria, Z.A., Ahmad, Z., Somchit, M.N., Arifah, A.K., Sulaiman, M.R., Teh, L.K., et al., 2010. Antihypercholesterolemia property and fatty acid composition of MARDI-produced virgin coconut oils. Afr. J. Pharm. Pharmacol., 4:636–644.
Zakaria, Z.A., Rofiee, M.S., Mohamed, A.M., Teh, L.K., Salleh, M.Z., 2011. In vitro antiproliferative and antioxidant activities and total phenolic contents of the extracts of Melastoma malabathricum leaves. J. Acupunct. Meridian Stud., 4(4): 248-256.
Zhang, Q., Wen, S., Wu, D., Feng, Q., Li, S., 2019. Dissolution kinetics of hemimorphite in trichloroacetic acid solutions. J. Mat. Res. Technol., 8(2): 1645-1652.
Zhao, K., Wen, L.B., 2018. DMF attenuates cisplatin-induced kidney injury via activating Nrf2 signaling pathway and inhibiting NF-kB signaling pathway. Euro. Rev. Med. Pharmacol. Sci., 22:8924-8931.
Published
Issue
Section
License
Copyright (c) 2024 Kazeem Ajeigbe, Olayemi Oladokun
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.