Study of the Effects of Bioactive Compounds of Cyanobacterium Desmonostoc alborizicum on Pathogenic Fungi of Wheat

Authors

  • Bahareh Nowruzi Department of Biotechnology, Faculty of Converging Sciences and Technologies, Islamic Azad University, Science and Research Branch, Tehran, Iran, Mailbox: 775/14515, Postcode: 1477893855, ORCID: 0000-0001-6656-777X
  • Mahdieh Salehi
  • Ali Talebi

DOI:

https://doi.org/10.14720/abs.67.3.19319

Keywords:

antifungal activity, Desmonostoc alborizicum, wheat, bioactive compounds

Abstract

Wheat, as one of the most economically important crops, constitutes a major part of the human diet. One of the major challenges in wheat preservation is combating various pests, including fungi, through different pesticides. Due to the toxicity caused in agricultural fields by chemical pesticides, there is a growing inclination towards using biopesticides instead. These biopesticides not only possess antimicrobial properties but also aid in the growth and development of crops. In this context, the bioactive compounds present in cyanobacteria are considered as potential biopesticide candidates. Therefore, the aim of this study is to observe the antifungal effect of bioactive compounds from the cyanobacterium Desmonostoc alborizicum on pathogenic fungi affecting wheat. For this purpose, after culturing the cyanobacterial strain Desmonostoc alborizicum for 14 days, the cyanobacterial extract was applied to wheat plants infected with the fungi Alternaria alternata, Fusarium oxysporum, Aspergillus terreus, and Phytophthora nicotiana var. The activity of antioxidant enzymes and MTT assay on 4T1 cells were then evaluated. The results showed that Aspergillus terreus exhibited the highest resistance, while Fusarium oxysporum showed the highest sensitivity to the cyanobacterial extract of Desmonostoc alborizicum. The activity of the enzymes guaiacol peroxidase, superoxide dismutase, catalase, and glutathione peroxidase in infected plants treated with the cyanobacterial extract significantly decreased (p<0.05), indicating effective stress control and enhanced immune response in these treatments. Therefore, the results of this study suggest that the use of Desmonostoc alborizicum extract can be effective as an antifungal agent in protecting wheat and other agricultural crops.

References

Alwathnani, H.A., Perveen, K., 2012. Biological control of fusarium wilt of tomato by antagonist fungi and cyanobacteria. African Journal of Biotechnology, 11, 1100-1105.

Chiaiese, P., Corrado, G., Colla, G., Kyriacou, M.C., Rouphael, Y., 2018. Renewable sources of plant biostimulation: microalgae as a sustainable means to improve crop performance. Frontiers in plant science, 9, 430391.

Dixon, G., Dixon, G., 1981. Pathogens of crucifer crops. Vegetable crop diseases, 112-156.

Farid, R., Mutale-Joan, C., Redouane, B., Mernissi Najib, E., Abderahime, A., Laila, S., Arroussi Hicham, E., 2019. Effect of microalgae polysaccharides on biochemical and metabolomics pathways related to plant defense in Solanum lycopersicum. Applied biochemistry and biotechnology, 188, 225-240.

Feller, R., Matos, Â.P., Mazzutti, S., Moecke, E.H., Tres, M.V., Derner, R.B., Oliveira, J.V., Junior, A.F., 2018. Polyunsaturated ω-3 and ω-6 fatty acids, total carotenoids and antioxidant activity of three marine microalgae extracts obtained by supercritical CO2 and subcritical n-butane. The Journal of Supercritical Fluids, 133, 437-443.

Fijalkowski, K.L., Kwarciak-Kozlowska, A., 2020. Phytotoxicity assay to assess sewage sludge phytoremediation rate using guaiacol peroxidase activity (GPX): A comparison of four growth substrates. Journal of environmental management, 263, 110413.

Gaafar, R.M., Osman, ME.-A. H., Abo-Shady, A.M., Almohisen, I.A., Badawy, G.A., El-Nagar, M.M., Ismail, G.A., 2022. Role of Antioxidant Enzymes and Glutathione S-transferase in bromoxynil herbicide stress tolerance in wheat plants. Plants, 11, 2679.

Gonçalves, A.L., 2021. The use of microalgae and cyanobacteria in the improvement of agricultural practices: a review on their biofertilising, biostimulating and biopesticide roles. Applied Sciences, 11, 871.

Gower, E.W., Keay, L.J., Oechsler, R.A., Iovieno,A., Alfonso, E.C., Jones, D.B., Colby, K., Tuli, S.S., Patel, S.R., Lee, S.M., 2010. Trends in fungal keratitis in the United States, 2001 to 2007. Ophthalmology, 117, 2263-2267.

Hamed, S.M., Hassan, S.H., Selim, S., Wadaan, M.A., Mohany, M., Hozzein, W.N., Abdelgawad, H., 2020. Differential responses of two cyanobacterial species to R-metalaxyl toxicity: Growth, photosynthesis and antioxidant analyses. Environmental Pollution, 258, 113681.

Hrouzek, P., Lukešová, A., Mareš, J., Ventura, S., 2013. Description of the cyanobacterial genus Desmonostoc gen. nov. including D. muscorum comb. nov. as a distinct, phylogenetically coherent taxon related to the genus Nostoc. Fottea, 13, 201-213.

Ismail, A.E.-W.A., Ismail, M.M., 2011. Antagonistic activity of some fungi and cyanobacteria species against Rhizoctonia solani. International Journal of Plant Pathology, 2, 101-114.

Ismail, G.SM., Saber, N. E.-S., Abdelrahim, B.I., Abou-Zeid, H.M., 2021. Influence of Cyanobacterial Biofertilizer on the Response of Zea mays Plant to Cadmium-stress. Egyptian Journal of Botany, 61, 391-404.

Khalifa, S.A., Shedid, E.S., Saied, E.M., Jassbi, A.R., Jamebozorgi, F.H., Rateb, M.E., Du, M., Abdel-Daim, MM., Kai, G.-Y., Al-Hammady, M. A., 2021. Cyanobacteria—From the oceans to the potential biotechnological and biomedical applications. Marine Drugs, 19, 241.

Khramtsov, P., Kalashnikova, T., Bochkova, M., Kropaneva, M., Timganova, V., Zamorina, S., Rayev, M., 2021. Measuring the concentration of protein nanoparticles synthesized by desolvation method: Comparison of Bradford assay, BCA assay, hydrolysis/UV spectroscopy and gravimetric analysis. International Journal of Pharmaceutics, 599, 120422.

Kumar, M., Ahmad, S., Singh, R., 2022. Plant growth promoting microbes: Diverse roles for sustainable and ecofriendly agriculture. Energy Nexus, 7, 100133.

Lam, M.K., Lee, K.T., 2012. Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnology advances, 30, 673-690.

Lass-Flörl, C., Dietl, A.-M., Kontoyiannis, D.P., Brock, M., 2021. Aspergillus terreus species complex. Clinical Microbiology Reviews, 34, e00311-20.

Lin, A., Liu, Q., Zhang, Y., Wang, Q., Li, S., Zhu, B., Miao, L., Du, Y., Zhao, S., Wei, H., 2022. A dopamine-enabled universal assay for catalase and catalase-like nanozymes. Analytical Chemistry, 94, 10636-10642.

Ma, L.-J., Geiser, D.M., Proctor, R.H., Rooney, A.P., O'donnell, K., Trail, F., Gardiner, D.M., Manners, J.M., Kazan, K., 2013. Fusarium pathogenomics. Annual review of microbiology, 67, 399-416.

Mai, V.-C., Nguyen, B.-H., Nguyen, D.-D., Nguyen, L.-A.-V., 2017. Nostoc calcicola extract improved the antioxidative response of soybean to cowpea aphid. Botanical studies, 58, 1-14.

Mutale-Joan, C., Rachidi, F., Mohamed, H.A., Mernissi, N.E., Aasfar, A., Barakate, M., Mohammed, D., Sbabou, L., Arroussi, H.E., 2021. Microalgae-cyanobacteria–based biostimulant effect on salinity tolerance mechanisms, nutrient uptake, and tomato plant growth under salt stress. Journal of Applied Phycology, 33, 3779-3795.

Nowruzi, B., Aljashamy, H., Firuzabad, M.Z., 2023. Study of pesticidal activity of bioactive compounds of Desmonostoc alborizicum in improving the antioxidative activity of Glycine max to cowpea aphid. Arthropod-Plant Interactions, 17, 811-824.

Nowruzi, B., Becerra-Absalón, I., Metcalf, J.S., 2022. A Novel Microcystin-Producing Cyanobacterial Species from the Genus Desmonostoc, Desmonostoc alborizicum sp. nov., Isolated from a Water Supply System of Iran. Current Microbiology, 80, 49.

Nowruzi, B., Hashemizaveh, N.m 2024. A Review of New Anticancer Nanoformulations based on Cyanobacteria and Microalgae and its Application in Medical Sciences, Dentistry and Pharmacy. SSU_Journals, 31, 7070-7089.

Nowruzi, B., Porzani, S.J., 2021. Toxic compounds produced by cyanobacteria belonging to several species of the order Nostocales: A review. Journal of Applied Toxicology, 41, 510-548.

Petrova, D., Yocheva, L., Petrova, M., Georgieva, Z., Karcheva, Z., Toshkova-Yotova, T., Pilarski, P., Chaneva, G., 2020. Antimicrobial and Antioxidant Activities of Microalgal Extracts. Oxid Commun, 43, 103.

Prasannabalaji, N., Ramya, V.P., Muralitharan, G., 2017. In vitro assessment of Lyngbya sp. and Phormidium sp. extracts for antibacterial and antioxidant properties. J Algal Biomass Util, 8, 16-29.

Priya, H., Prasanna, R., Ramakrishnan, B., Bidyarani, N., Babu, S., Thapa, S., Renuka, N., 2015. Influence of cyanobacterial inoculation on the culturable microbiome and growth of rice. Microbiological Research, 171, 78-89.

Quan, L.J., Zhang, B., Shi, W.W., Li, H.Y., 2008. Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. Journal of integrative plant biology, 50, 2-18.

Quintana, L., Gutiérez, S., Arriola, M., Morinigo, K., Ortiz, A., 2017. Rice brown spot Bipolaris oryzae (Breda de Haan) Shoemaker in Paraguay. Tropical Plant Research, 4, 419-420.

Righini, H., Roberti, R., 2019. Algae and cyanobacteria as biocontrol agents of fungal plant pathogens. Plant microbe interface, 219-238.

Ściskalska, M., Ołdakowska, M., Marek, G., Milnerowicz, H., 2020. Changes in the activity and concentration of superoxide dismutase isoenzymes (Cu/Zn SOD, MnSOD) in the blood of healthy subjects and patients with acute pancreatitis. Antioxidants, 9, 948.

Seifi, G., Nowruzi, B., Bagheri, F., 2024. The effect of dielectric barrier discharge plasma treatment on Dulcicalothrix alborzica (Nostocales, cyanobacteria) under lead stress. Bioremediation Journal, 1-14.

Shishido, T. K., Humisto, A., Jokela, J., Liu, L., Wahlsten, M., Tamrakar, A., Fewer, D.P., Permi, P., Andreote, A.P., Fiore, M.F., 2015. Antifungal compounds from cyanobacteria. Marine drugs, 13, 2124-2140.

Silva, E., Rios, J., Araujo, M., Silveira, P., Rodrigues, F., 2019. Defence responses in flag leaves and spikes of common wheat Triticum aestivum cultivars with contrasting levels of basal resistance to blast caused by Pyricularia oryzae. Plant Pathology, 68, 645-658.

Templeton, A.R., 2013. Biological races in humans. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 44, 262-271.

Tiwari, A., Sharma, A., 2013. Antifungal activity of Anabaena variabilis against plant pathogens. Int. J. Pharm. Bio. Sci, 4, 1030-1036.

Woudenberg, J., Groenewald, J., Binder, M., Crous, P., 2013. Alternaria redefined. Studies in mycology, 75, 171-212.

Woudenberg, J., Seidl, M., Groenewald, J., De Vries, M., Stielow, J., Thomma, B., Crous, P., 2015. Alternaria section Alternaria: Species, formae speciales or pathotypes? Studies in mycology, 82, 1-21.

Wu, J., Yu, Y., Cheng, Y., Cheng, C., Zhang, Y., Jiang, B., Zhao, X., Miao, L., Wei, H., 2021. Ligand‐dependent activity engineering of glutathione peroxidase‐mimicking MIL‐47 (V) metal–organic framework nanozyme for therapy. Angewandte Chemie, 133, 1247-1254.

Downloads

Published

20.09.2024

Issue

Section

Original Research Paper

How to Cite

Nowruzi, B., Salehi, M. ., & Talebi , A. . (2024). Study of the Effects of Bioactive Compounds of Cyanobacterium Desmonostoc alborizicum on Pathogenic Fungi of Wheat. Acta Biologica Slovenica, 67(3), 21-35. https://doi.org/10.14720/abs.67.3.19319