Soil mesofauna diversity in agricultural systems of Slovenia using the QBS index and its modifications
DOI:
https://doi.org/10.14720/abs.68.01.19787Keywords:
soil health, soil microarthropods, biodiversity, agroecosystems, tillage intensity, organic farmingAbstract
Soil mesofauna plays a key role in maintaining soil health by supporting the decomposition of organic matter, nutrient cycling and the maintenance of soil structure. In this study of Slovenian agricultural ecosystems, we used four modifications of the QBS index, a soil biological quality index based on soil mesofauna. We compared diversity in arable fields under different tillage intensities, a strawberry field and an orchard, managed with either organic or integrated pest management methods (IPM). The results show significant differences in the mesofaunal communities in the soil. Minimum tillage promoted higher biodiversity, especially of Collembola, compared to conventional tillage. In fruit production systems, the ratio of Collembola to Acarina differed from that of arable fields, skewing in favour of Collembola, possibly related to the use of copper-containing pesticides in organic orchards and systemic herbicides in IPM systems. The QBS index values for soil health varied considerably between systems. Only QBS modifications considering the abundances of organisms (QBS-ab and QBS-a) were able to distinguish between different system-management groups. This study provides insights into the limitations of the originally proposed QBS-ar index to discern the effects of farming intensity on the soil mesofaunal community. Results suggest that minimum tillage and organic management practices can promote healthier soil ecosystems, emphasizing the importance of sustainable soil management for the promotion of soil biodiversity. Future research should aim to incorporate a broader range of agricultural practices and assign fauna to a higher taxonomic rank to further explain the effects on soil mesofauna diversity.
Metrics
References
ARSO. 2023. [Dataset]. https://meteo.arso.gov.si/met/sl/climate/maps/
Basset, Y., Hajibabaei, M., Wright, M. T. G., Castillo, A. M., Donoso, D. A., Segar, S. T., Souto-Vilarós, D., Soliman, D. Y., Roslin, T., Smith, M. A., Lamarre, G. P. A., De León, L. F., Decaëns, T., Palacios-Vargas, J. G., Castaño-Meneses, G., Scheffrahn, R. H., Rivera, M., Perez, F., Bobadilla, R., … Barrios, H., 2022. Comparison of traditional and DNA metabarcoding samples for monitoring tropical soil arthropods (Formicidae, Collembola and Isoptera). Scientific Reports, 12(1), 10762. https://doi.org/10.1038/s41598-022-14915-2
Behan-Pelletier, V. M., 2003. Acari and Collembola biodiversity in Canadian agricultural soils. Canadian Journal of Soil Science, 83(Special Issue), 279–288. https://doi.org/10.4141/S01-063
Betancur‐Corredor, B., Lang, B., Russell, D. J., 2022. Reducing tillage intensity benefits the soil micro‐ and mesofauna in a global meta‐analysis. European Journal of Soil Science, 73(6), e13321. https://doi.org/10.1111/ejss.13321
Chassain, J., Joimel, S., Gardarin, A., Gonod, L. V., 2024. Indicators of practice intensity unearth the effects of cropping systems on soil mesofauna. Agriculture, Ecosystems & Environment, 362, 108854. https://doi.org/10.1016/j.agee.2023.108854
Cluzeau, D., Guernion, M., Chaussod, R., Martin-Laurent, F., Villenave, C., Cortet, J., Ruiz-Camacho, N., Pernin, C., Mateille, T., Philippot, L., Bellido, A., Rougé, L., Arrouays, D., Bispo, A., Pérès, G., 2012. Integration of biodiversity in soil quality monitoring: Baselines for microbial and soil fauna parameters for different land-use types. European Journal of Soil Biology, 49, 63–72. https://doi.org/10.1016/j.ejsobi.2011.11.003
D’Avino, L., Bigiotti, G., Vitali, F., 2023. QBS-ar and QBS-ar_BF index toolbox for biodiversity assessment of microarthropods community in soil. Zenodo. https://doi.org/10.5281/zenodo.7778672
Di Giovanni, F., Nardi, F., Frati, F., Migliorini, M., 2024. Below-ground arthropod diversity in conventional and organic vineyards: A review. Crop Protection, 180, 106666. https://doi.org/10.1016/j.cropro.2024.106666
Foucher, A., Evrard, O., Ficetola, G. F., Gielly, L., Poulain, J., Giguet-Covex, C., Laceby, J. P., Salvador-Blanes, S., Cerdan, O., Poulenard, J., 2020. Persistence of environmental DNA in cultivated soils: Implication of this memory effect for reconstructing the dynamics of land use and cover changes. Scientific Reports, 10(1), 10502. https://doi.org/10.1038/s41598-020-67452-1
Gagnarli, E., Goggioli, D., Tarchi, F., Guidi, S., Nannelli, R., Vignozzi, N., Valboa, G., Lottero, M. R., Corino, L., Simoni, S., 2015. Case study of microarthropod communities to assess soil quality in different managed vineyards. SOIL, 1(2), 527–536. https://doi.org/10.5194/soil-1-527-2015
General Secretariat of the Council, 2024. Proposal for a Directive of the European Parliament and of the Council on Soil Monitoring and Resilience (Soil Monitoring Law) (No. 11299/24). Council of the European Union. https://eur-lex.europa.eu/
Guerra, C. A., Heintz-Buschart, A., Sikorski, J., Chatzinotas, A., Guerrero-Ramírez, N., Cesarz, S., Beaumelle, L., Rillig, M. C., Maestre, F. T., Delgado-Baquerizo, M., Buscot, F., Overmann, J., Patoine, G., Phillips, H. R. P., Winter, M., Wubet, T., Küsel, K., Bardgett, R. D., Cameron, E. K., … Eisenhauer, N., 2020. Blind spots in global soil biodiversity and ecosystem function research. Nature Communications, 11(1), 3870. https://doi.org/10.1038/s41467-020-17688-2
Hornsby, A. G., Herner, A. E., Don Wauchope, R., 1996. Pesticide Properties in the Environment. Springer. https://doi.org/10.1007/978-1-4612-2316-0
Jemec Kokalj, A., Nagode, A., Drobne, D., Dolar, A., 2024. Effects of agricultural microplastics in multigenerational tests with insects; mealworms Tenebrio molitor. Science of The Total Environment, 946, 174490. https://doi.org/10.1016/j.scitotenv.2024.174490
Jin, Q., Han, H., Hu, X., Li, X., Zhu, C., Ho, S. Y. W., Ward, R. D., Zhang, A., 2013. Quantifying Species Diversity with a DNA Barcoding-Based Method: Tibetan Moth Species (Noctuidae) on the Qinghai-Tibetan Plateau. PLoS ONE, 8(5), e64428. https://doi.org/10.1371/journal.pone.0064428
Joimel, S., Schwartz, C., Hedde, M., Kiyota, S., Krogh, P. H., Nahmani, J., Pérès, G., Vergnes, A., Cortet, J., 2017. Urban and industrial land uses have a higher soil biological quality than expected from physicochemical quality. Science of The Total Environment, 584–585, 614–621. https://doi.org/10.1016/j.scitotenv.2017.01.086
Kempson, D. L., 1963. A new extractor for woodland litter. Pedobiologia, 3, 1–21.
Lešnik, M., Tojnko, S., Solar, A., Usenik, V., Koron, D., Turinek, Matjaž., Godec, B., Vrhovnik, I., Jančar, M., Brence, A., Bajec, D., Rodič, K., Caf, A., 2016. Tehnološka navodila za ekološko pridelavo sadja. Ministrstvo za kmetijstvo, gozdarstvo in prehrano.
Mantoni, C., Pellegrini, M., Dapporto, L., Del Gallo, M. M., Pace, L., Silveri, D., Fattorini, S., 2021. Comparison of Soil Biology Quality in Organically and Conventionally Managed Agro-Ecosystems Using Microarthropods. Agriculture, 11(10), Article 10. https://doi.org/10.3390/agriculture11101022
Menta, C., Conti, F. D., Pinto, S., 2018. Microarthropods biodiversity in natural, seminatural and cultivated soils—QBS-ar approach. Applied Soil Ecology, 123, 740–743. https://doi.org/10.1016/j.apsoil.2017.05.020
Menta, C., Leoni, A., Bardini, M., Gardi, C., Gatti, F., 2008. Nematode and Microarthropod Communities: Comparative Use of Soil Quality Bioindicators in Covered Dump and Natural Soils. Environmental Bioindicators, 3(1), 35–46. https://doi.org/10.1080/15555270701885762
Menta, C., Remelli, S., 2020. Soil Health and Arthropods: From Complex System to Worthwhile Investigation. Insects, 11(1), 54. https://doi.org/10.3390/insects11010054
Ogrin, D., Repe, B., Štaut, L., Svetlin, D., Ogrin, M., 2023. Podnebna tipizacija Slovenije po podatkih za obdobje 1991–2020. Dela, 59, 5–89. https://doi.org/10.4312/dela.59.5-89
Orgiazzi, A., Dunbar, M. B., Panagos, P., De Groot, G. A., Lemanceau, P., 2015. Soil biodiversity and DNA barcodes: Opportunities and challenges. Soil Biology and Biochemistry, 80, 244–250. https://doi.org/10.1016/j.soilbio.2014.10.014
Parisi, V., Menta, C., Gardi, C., Jacomini, C., Mozzanica, E., 2005. Microarthropod communities as a tool to assess soil quality and biodiversity: A new approach in Italy. Agriculture, Ecosystems & Environment, 105(1–2), 323–333. https://doi.org/10.1016/j.agee.2004.02.002
Pravilnik o ekološki pridelavi in predelavi kmetijskih pridelkov oziroma živil, 2018. Version Uradni list RS, 72/18, 17/19 – popr., 105/22, 2018.
Pravilnik o integrirani pridelavi poljščin, zelenjave, hmelja, sadja in oljk ter grozdja, 2023. Version Uradni list RS, št. 31/23, 67/23, 2023.
Shafea, L., Yap, J., Beriot, N., Felde, V. J. M. N. L., Okoffo, E. D., Enyoh, C. E., Peth, S., 2023. Microplastics in agroecosystems: A review of effects on soil biota and key soil functions. Journal of Plant Nutrition and Soil Science, 186(1), 5–22. https://doi.org/10.1002/jpln.202200136
Tabaglio, V., Gavazzi, C., Menta, C., 2009. Physico-chemical indicators and microarthropod communities as influenced by no-till, conventional tillage and nitrogen fertilisation after four years of continuous maize. Soil and Tillage Research, 105(1), 135–142. https://doi.org/10.1016/j.still.2009.06.006
Vignozzi, N., Agnelli, A. E., Brandi, G., Gagnarli, E., Goggioli, D., Lagomarsino, A., Pellegrini, S., Simoncini, S., Simoni, S., Valboa, G., Caruso, G., Gucci, R., 2019. Soil ecosystem functions in a high-density olive orchard managed by different soil conservation practices. Applied Soil Ecology, 134, 64–76. https://doi.org/10.1016/j.apsoil.2018.10.014
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Naglič V., Šibanc N., Grebenc T., Bertoncelj I.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.




