Unveiling the antibacterial potential of latex-derived phytocomponents from Calotropis gigantea targeting bacterial Penicillin-binding proteins: chemical profiling, in silico docking, and in vitro lab validation
DOI:
https://doi.org/10.14720/abs.68.01.19803Keywords:
penicilin-binding protein, calotropis latex, in silico studies, antibacterialAbstract
Uncontrolled use of currently accessible medicines has caused antibiotic resistance in bacteria worldwide. This work aimed to undertake molecular docking and chemical profiling of bioactive components extracted from Calotropis gigantea latex, with wet lab confirmation to follow. Gas chromatography was used to analyze the phytochemical profile. The docking tool, Cb-dock2, was used for in-silico analysis. G+ and G- bacterial strains were utilized to confirm the wet lab results. Chemical profiling revealed 18 peaks, and some major bioactive compounds were like phytol, 4-methyl-2- phenylindole and α-tocospiro A. Docking analysis revealed strong interaction against bacterial Penicillin-binding Protein (PBP1a) with docking scores ranging from -5.2 to -7.9 (Vina score). The PBP-Ligand complex has Van der Waals, hydrogen bond, pi-cation, and alkyl bonding interactions, according to the results of the interaction investigations. Calotropis latex successfully suppressed the development of bacterial strains (G+ and G-) with inhibition zones ranging from 1.1 cm to 2.2 cm, as demonstrated by in-vitro tests, indicating their potential as antibacterial medications. The study found that latex-based bioactive compounds have the potential to be used in the pharmaceutical and biotechnology sectors by facilitating the creation of structural alterations that lead to stronger medications. Therefore, this latex-derived compound may open a new pipeline into the development of multi-target antibiotics against a broad-spectrum multidrug-resistant G- bacterium.
Metrics
References
Agu, P.C., Afiukwa, C.A., Orji, O.U., Ezeh, E.M., Ofoke, I.H., Ogbu, C.O., Ugwuja, E.I., Aja, P.M., 2023. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Scientific Reports, 13, 13398. DOI: 10.1038/s41598-023-40160-2.
Nejhad, A., Alizadeh Behbahani, B., Hojjati, M., Vasiee, A., Mehrnia, M.A., 2023. Identification of phytochemical, antioxidant, anticancer and antimicrobial potential of Calotropis procera leaf aqueous extract. Scientific Reports, 13, 14716. DOI: 10.1038/s41598-023-42086-1.
Al-Rowaily, S.L., Abd-ElGawad, A.M., Assaeed, A.M., Elgamal, A.M., Gendy, A.E.G.E., Mohamed, T.A., Dar, B.A., Mohamed, T.K., Elshamy, A.I., 2020. Essential Oil of Calotropis procera: Comparative Chemical Profiles, antimicrobial Activity, and Allelopathic Potential on Weeds. Molecules, 25, 5203. DOI: 10.3390/molecules25215203, PubMed: 33182287.
Amin, S.M., Hassan, H.M., El Gendy, A.E.N.G., El-Beih, A.A., Mohamed, T.A., Elshamy, A.I., Bader, A., Shams, K.A., Mohammed, R., Hegazy, M.E.F., 2019. Comparative chemical study and antimicrobial activity of essential oils of three Artemisia species from Egypt and Saudi Arabia. Flavour and Fragrance Journal, 34, 450–459. DOI: 10.1002/ffj.3525.
Borges, R.S., Lima, E.S., Keita, H., Ferreira, I.M., Fernandes, C.P., Cruz, R.A.S., Duarte, J.L., Velázquez-Moyado, J., Ortiz, B.L.S., Castro, A.N., Ferreira, J.V., da Silva Hage-Melim, L.I., Carvalho, J.C.T., 2018. Anti-inflammatory and antialgic actions of a nanoemulsion of Rosmarinus officinalis L. essential oil and a molecular docking study of its major chemical constituents. Inflammopharmacology, 26, 183–195. DOI: 10.1007/s10787-017-0374-8.
Bouzidi, A., Azizi, A., Messaoudi, O., Abderrezzak, K., Vidari, G., Hellal, A.N., Patel, C.N., 2023. Phytochemical analysis, biological activities of methanolic extracts and an isolated flavonoid from Tunisian Limoniastrum monopetalum (L.) Boiss: An in vitro and in silico investigations. Scientific Reports, 13, 19144. DOI: 10.1038/s41598-023-46457-6.
Bruning, J.B., Murillo, A.C., Chacon, O., Barletta, R.G., Sacchettini, J.C., 2011. Structure of the Mycobacterium tuberculosis D-alanine: D-alanine ligase, a target of the antituberculosis drug D-cycloserine. Antimicrobial Agents and Chemotherapy, 55, 291–301. DOI: 10.1128/AAC.00558-10.
Chaachouay, N., Zidane, L., 2024. Plant-derived natural products: A source for drug discovery and development. Drugs and Drug Candidates, 3, 184–207. DOI: 10.3390/ddc3010011.
Chan, L.C., Gilbert, A., Basuino, L., da Costa, T.M., Hamilton, S.M., Dos Santos, K.R., Chambers, H.F., Chatterjee, S.S., 2016. PBP 4 mediates high-level resistance to new-generation cephalosporins in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 60, 3934–3941. DOI: 10.1128/AAC.00358-16.
Contreras-Martel, C., Martins, A., Ecobichon, C., Trindade, D.M., Matteï, P.J., Hicham, S., Hardouin, P., Ghachi, M.E., Boneca, I.G., Dessen, A., 2017. Molecular architecture of the PBP2-MreC core bacterial cell wall synthesis complex. Nature Communications, 8, 776. DOI: 10.1038/s41467-017-00783-2.
Da Costa, T.M., De Oliveira, C.R., Chambers, H.F., Chatterjee, S.S.,018. PBP4: A new perspective on Staphylococcus aureus β-lactam resistance. Microorganisms, 6, 57. DOI: 10.3390/microorganisms6030057.
Galinier, A., Delan-Forino, C., Foulquier, E., Lakhal, H., Pompeo, F., 2023. Recent advances in peptidoglycan synthesis and regulation in bacteria. Biomolecules, 13, 720. DOI: 10.3390/biom13050720.
Gutbrod, P., Yang, W., Grujicic, G.V., Peisker, H., Gutbrod, K., Du, L.F., Dörmann, P., 2021. Phytol derived from chlorophyll hydrolysis in plants is metabolized via phytenal. Journal of Biological Chemistry, 296, 100530. DOI: 10.1016/j.jbc.2021.100530.
Gyawali, R., Bhattarai, B., Bajracharya, S., Bhandari, S., Bhetwal, P., Bogati, K., Neupane, S., Shrestha, S., Shrestha, A.K., Joshi, R., Paudel, P.N., 2020. α-amylase inhibition, antioxidant activity and phytochemical analysis of Calotropis gigantea (L.) Dryand. Journal of Health and Allied Sciences, 10, 77–81. DOI: 10.37107/jhas.143.
Harris, A.D., Samore, M.H., Lipsitch, M., Kaye, K.S., Perencevich, E., Carmeli, Y.,2002. Control-group selection importance in studies of antimicrobial resistance: Examples applied to Pseudomonas aeruginosa, Enterococci, and Escherichia coli. Clinical Infectious Diseases, 34, 1558–1563. DOI: 10.1086/340533, PubMed: 12032889.
Islam, M.T., Ali, E.S., Uddin, S.J., Shaw, S., Islam, M.A., Ahmed, M.I., Chandra Shill, M., Karmakar, U.K., Yarla, N.S., Khan, I.N., Billah, M.M., Pieczynska, M.D., Zengin, G., Malainer, C., Nicoletti, F., Gulei, D., Berindan-Neagoe, I., Apostolov, A., Banach, M., Yeung, A.W.K., El-Demerdash, A., Xiao, J., Dey, P., Yele, S., Jóźwik, A., Strzałkowska, N., Marchewka, J., Rengasamy, K.R.R., Horbańczuk, J., Kamal, M.A., Mubarak, M.S., Mishra, S.K., Shilpi, J.A., Atanasov, A.G., 2018. Phytol: A review of biomedical activities. Food and Chemical Toxicology, 121, 82–94. DOI: 10.1016/j.fct.2018.08.032.
Julius, O.O., Oluwasusi, V.O., Ibiyemi, M.F. and Oluwatobi, F.B., 2021. Antibacterial Activities and Phytochemical Screening of Crude Extracts of Calotropis gigantea (Giant Milk Weed). South Asian Journal of Research in Microbiology, 9(3), pp.24-31.
Kumar, H., Sharma, S., Vasudeva, N., 2021. Pharmacological profile of Calotropis gigantea in various diseases: A profound look. Int. J. Creat. Res Thoughts, 9, 2987–2996.
Lee, K., Kim, D., 2019. In-silico molecular binding prediction for human drug targets using deep neural multi-task learning. Genes, 10, 906. DOI: 10.3390/genes10110906, PubMed: 31703452.
Lima, S.L., Colombo, A.L., de Almeida Junior, J.N., 2019. Fungal cell wall: Emerging antifungals and drug resistance. Frontiers in Microbiology, 10, 2573. DOI: 10.3389/fmicb.2019.02573.
Loza-Mejía, M.A., Salazar, J.R., Sánchez-Tejeda, J.F., 2018. In silico studies on compounds derived from Calceolaria: Phenylethanoid glycosides as potential multitarget inhibitors for the development of pesticides. Biomolecules, 8, 121. DOI: 10.3390/biom8040121.
Masters, E.A., de Mesy Bentley, K.L., Gill, A.L., Hao, S.P., Galloway, C.A., Salminen, A.T., Guy, D.R., McGrath, J.L., Awad, H.A., Gill, S.R., Schwarz, E.M., 2020. Identification of penicillin binding protein 4 (PBP4) as a critical factor for Staphylococcus aureus bone invasion during osteomyelitis in mice. PLOS Pathogens, 16, e1008988. DOI: 10.1371/journal.ppat.1008988.
Mir, W.R., Bhat, B.A., Rather, M.A., Muzamil, S., Almilaibary, A., Alkhanani, M., Mir, M.A., 2022. Molecular docking analysis and evaluation of the antimicrobial properties of the constituents of Geranium wallichianum D. Don ex Sweet from Kashmir Himalaya. Scientific Reports, 12, 12547. DOI: 10.1038/s41598-022-16102-9.
Moon, T.M., D’Andréa, É.D., Lee, C.W., Soares, A., Jakoncic, J., Desbonnet, C., Garcia-Solache, M., Rice, L.B., Page, R., Peti, W., 2018. The structures of penicillin-binding protein 4 (PBP4) and PBP5 from Enterococci provide structural insights into β-lactam resistance. Journal of Biological Chemistry, 293, 18574–18584. DOI: 10.1074/jbc.RA118.006052.
Nasim, N., Sandeep, I.S., Mohanty, S., 2022. Plant-derived natural products for drug discovery: Current approaches and prospects. Nucleus (Calcutta), 65, 399–411. DOI: 10.1007/s13237-022-00405-3.
Nejhad A., Behbahani AB, Hojjati M, Vasiee A, Mehrnia MA., 2023. Identification of phytochemical, antioxidant, anticancer and antimicrobial potential of Calotropis procera leaf aqueous extract. Sci Rep 13, 14716.
Nkwocha, C., Felix, O.J., Idoko, N.R., 2023. GC-FID spectroscopic analysis and antioxidant activities of methanolic fraction of Cassia tora leaves. Pharmacological research. Modern Chinese Medicine, 9, 100338.
Nooshkam, M., Falah, F., Zareie, Z., Tabatabaei Yazdi, F., Shahidi, F., Mortazavi, S.A., 2019. Antioxidant potential and antimicrobial activity of chitosan–inulin conjugates obtained through the Maillard reaction. Food Science and Biotechnology, 28, 1861–1869. DOI: 10.1007/s10068-019-00635-3.
Onyeike, E.N., Egbuna, C., Patrick-Iwuanyanwu, K.C., 2023. Phytochemical screening and quantitative analysis of Annona muricata Leaf ethanolic extract by gas chromatography-flame ionization detection (GC-FID). IPS Journal of Drug Discovery Research and Reviews, 2, 1–4. DOI: 10.54117/ijddrr.v2i1.15.
Saddiq, A.A., Tag, H.M., Doleib, N.M., Salman, A.S., Hagagy, N., 2022. Antimicrobial, antigenotoxicity, and Characterization of Calotropis procera and Its Rhizosphere-Inhabiting Actinobacteria: In vitro and in vivo Studies. Molecules, 27, 3123. DOI: 10.3390/molecules27103123.
Salm, S., Rutz, J., van den Akker, M., Blaheta, R.A., Bachmeier, B.E., 2023. Current state of research on the clinical benefits of herbal medicines for non-life-threatening ailments. Frontiers in Pharmacology, 14, 1234701. DOI: 10.3389/fphar.2023.1234701.
Saxena, D., Maitra, R., Bormon, R., Czekanska, M., Meiers, J., Titz, A., Verma, S., Chopra, S., 2023. Tackling the outer membrane: Facilitating compound entry into Gram-negative bacterial pathogens. Npj Antimicrobials and Resistance, 1, 17. DOI: 10.1038/s44259-023-00016-1.
Shahidi, F., Tabatabaei Yazdi, F., Nooshkam, M., Zareie, Z., Fallah, F., 2020. Chemical modification of chitosan through non-enzymatic glycosylation reaction to improve its antimicrobial and anti-oxidative properties. Iran. Food Science and Technology Research J, 16, 117–129.
Sharma, A.D., Kaur, I., 2022a. A novel therapeutic eucalyptol from eucalyptus essential oil targeting penicillin binding proteins (PBPs) against gram-positive and gram-negative bacteria: Molecular docking and experimental approach. Arabian Journal of Medicinal and Aromatic Plants, 8, 24–42.
Sharma, A.D., Kaur, I., 2022b. Aroma profile and in-silico molecular docking studies of essential oil against "Aspergillosis" from Eucalyptus polybrachtea. South African Journal of Botany, 147: 754-763. https://doi.org/10.1016/j.sajb.2022.03.011
Singh, M., Javed, K., 2013. Chemical characterization and antimicrobial activity of Calotropis gigantea Linn. Flower essential oil collected from northern plain of India. International Journal of Advanced Biotechnology and Research, 4, 533–541.
Sripathi, R., Ravi, S., 2017. Molecular docking studies of the constituents present in the essential oil of Plectranthus hadiensis against bacterial proteins. International Journal of Chemical Sciences, 15, 185.
Straume, D., Piechowiak, K.W., Olsen, S., Stamsås, G.A., Berg, K.H., Kjos, M., Heggenhougen, M.V., Alcorlo, M., Hermoso, J.A., Håvarstein, L.S., 2020. Class A PBPs have a distinct and unique role in the construction of the pneumococcal cell wall. Proceedings of the National Academy of Sciences of the United States of America, 117, 6129–6138. DOI: 10.1073/pnas.1917820117.
Timilsina, H., Modi, B. and Basnyat, R., 2020. Phytochemical, antimicrobial and ethnobotanical study of Calotropis gigantea. Journal of Health and Allied Sciences, 10(2), pp.23-27.
Vaou, N., Stavropoulou, E., Voidarou, C.C., Tsakris, Z., Rozos, G., Tsigalou, C., Bezirtzoglou, E., 2022. Interactions between medical plant-derived bioactive compounds: Focus on antimicrobial combination effects. Antibiotics, 11, 1014. DOI: 10.3390/antibiotics11081014.
Wadhwani, B.D., Mali, D., Vyas, P., Nair, R., Khandelwal, P., 2021. A review on phytochemical constituents and pharmacological potential of Calotropis procera. RSC Adv. 4;11(57):35854-35878. doi: 10.1039/d1ra06703f
Wahba, H.E., Khalid, K.A., 2018. Comparative study on essential oil composition in various organs of Sodom apple (Calotropis procera) grown wild in Egypt. Asian Journal of Plant Sciences, 17, 85–90. DOI: 10.3923/ajps.2018.85.90.
Wijeweera, W.P.S.N., Senaratne, K.A.D.W., Dhileepan, K., 2021. Studies on the fruit feeding weevil, Paramecops farinosa (Coleoptera: Curculionidae. in Sri Lanka as a prospective weed biological control agent of invasive weed, Calotropis spp. Journal of Biological Control, 34, 241–250.
Yang, X., Zhang, X., Yang, S.P., Liu, W.Q., 2013. Evaluation of the antibacterial activity of patchouli oil. Iranian Journal of Pharmaceutical Research, 12, 307–316. PubMed: 24250637.
Published
Issue
Section
License
Copyright (c) 2024 Arun Sharma, Amrita Chauhan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.




