Antioxidant activity and metal content: a study on Dictamnus albus
DOI:
https://doi.org/10.14720/abs.68.2.21295Keywords:
phenolic compounds, micronutrients, hydroxyl radical, oxidative stressAbstract
Dictamnus albus is a perennial plant of warm, dry, and sunny habitats that have been traditionally used as a medicinal plant since ancient times. Our study focused on examining the phenolic compound content, antioxidant capacity, and concentrations of Fe, Cu, Zn, Mn, and Ni in the leaves of D. albus. The concentration of phenolic compounds in the leaves of D. albus was 5.40±0.09 mg GAE/gDW. The leaf ethanol extract of D. albus exhibited significant antioxidant activity, as demonstrated by its ability to scavenge DPPH radicals, with an IC50 value of 38.20±0.46 μg/mL. The ethanol extract showed a slightly lower capacity to scavenge H2O2, with an IC50 value of 912±40 μg/mL. For the first time, we demonstrated that D. albus extract has a significant capacity to scavenge hydroxyl radicals (•OH). After adding D. albus extract, the residual •OH radicals percentage was 39%, compared to 13% when using a 2 mM Trolox standard. In addition, the ethanol extract of D. albus showed the ability to reduce Fe3+ and Cu2+, indicating the extract's ability to inhibit oxidative processes. Furthermore, D. albus extract can chelate Fe and thus prevent the Fenton reaction. The metal content in the leaves of D. albus was as follows: Fe 44.16±0.685 mg/kg, Cu 6.06±0.253 mg/kg, Zn 21.64±0.571 mg/kg, Mn 22.01±0.413 mg/kg, and Ni 1.21±0.112 mg/kg. Our results showed that the ethanol extract of D. albus has significant antioxidant capacity, that the concentrations of Fe, Cu, Zn, Mn, and Ni were below permissible doses for medicinal plants, and that the extract can contribute to the daily intake of these essential elements. These findings suggest that D. albus extract could be used in the therapy of diseases associated with oxidative stress.
Metrics
Downloads
References
Akanni, O.O., Owumi, S.E., Adaramoye, O.A., 2014. In vitro studies to assess the antioxidative, radical scavenging and arginase inhibitory potentials of extracts from Artocarpus altilis, Ficus exasperate and Kigelia africana. Asian Pacific Journal of Tropical Biomedicine, 4, S492S499. https://doi.org/10.12980/APJTB.4.2014C581
Apak, R., Güçlü, K., Demirata, B., Ozyürek, M., Celik, S. E., Bektaşoğlu, B., … Ozyurt, D., 2007. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules, 12(7), 1496–1547. https://doi.org/10.3390/12071496
Apak, R., Güçlü, K., Özyürek, M., Karademir, S.E., 2004. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52(26), 79707981. https://doi.org/10.1021/jf048741x
Astutik, S., Pretzsch, J., Ndzifon Kimengsi, J., 2019. Asian medicinal plants’ production and utilization potentials: A review. Sustainability, 11, 5483. https://doi.org/10.3390/su11195483
Baba, H.S., Mohammed, M.I., 2021. Determination of some essential metals in selected medicinal plants. ChemSearch Journal, 12(1), 1520.
Benzie, I.F.F., Strain, J.J., 1996. Ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Analytical Biochemistry, 239, 7076. https://doi.org/10.1006/abio.1996.0292
Bhat, R., Kiran, K., Arun, A.B., Karim, A.A., 2010. Determination of mineral composition and heavy metal content of some nutraceutically valued plant products. Food Analytical Methods, 3, 181187. https://doi.org/10.1007/s12161-009-9107-y
Bilgin, M., Şahin, S., 2013. Effects of geographical origin and extraction methods on total phenolic yield of olive tree (Olea europaea) leaves. Journal of the Taiwan Institute of Chemical Engineers, 44(1), 812. https://doi.org/10.1016/j.jtice.2012.08.008
Brieger, K., Schiavone, S., Miller, Jr. F.J., Krause, K.H., 2012. Reactive oxygen species: From health to disease. Swiss Medical Weekly, 142, w13659. https://doi.org/10.4414/smw.2012.13659
Brima, E.I., 2018. Levels of essential elements in different medicinal plants determined by using inductively coupled plasma mass spectrometry. Journal of Analytical Methods in Chemistry, 2018(1), 7264892. https://doi.org/10.1155/2018/7264892
Cao, D., Hao, Q., Sun, R., Wang, Y., Zhang, Y., Zhou, H., 2022. Multiple stoichiometric methods combined with FT-IR spectroscopy for screening new medicinal parts from Dictamnus dasycarpus Turcz with pronounced antioxidant potential. Journal of Molecular Structure, 1252, 132187. https://doi.org/10.1016/j.molstruc.2021.132187
Carter, P., 1971. Spectrophotometric determination of serum iron at the submicrogram level with a new reagent (ferrozine). Analytical Biochemistry, 40(2), 450458. https://doi.org/10.1016/0003-2697(71)90405-2
Çelik, S.E., Özyürek, M., Güçlü, K., Apak, R., 2010. Solvent effects on the antioxidant capacity of lipophilic and hydrophilic antioxidants measured by CUPRAC, ABTS/persulphate and FRAP methods. Talanta, 81(4-5), 13001309. https://doi.org/10.1016/j.talanta.2010.02.025
Chizzola, R., 2012. Metallic mineral elements and heavy metals in medicinal plants. Medicinal and Aromatic Plant Science and Biotechnology, 6(1), 3953.
Diklić, N., 1973. Fam. Rutaceae A. L. Juss. In: Josifović, M. (ed.) Flora SR Srbije 5, Srpska akademija nauka i umetnosti, Beograd, 6269.
Dobrinas, S., Soceanu, A., Popescu, V., Carazeanu Popovici, I., Jitariu, D., 2021. Relationship between total phenolic content, antioxidant capacity, Fe and Cu content from tea plant samples at different brewing times. Processes, 9(8), 1311. https://doi.org/10.3390/pr9081311
Duke, J.A., Bogenschutz-Godwin, M.J., duCellier, J., Duke, P.A.K., 2002. Handbook of Medicinal Herbs. CRC Press, Boca Raton, London, New York, Washington, D.C.
Ebrahimzadeh, M.A., Nabavi, S.M., Nabavi, S.F., Bahramian, F., Bekhradnia, A.R., 2010. Antioxidant and free radical scavenging activity of H. officinalis L. var. angustifolius, V. odorata, B. hyrcana and C. speciosum. Pakistan Journal of Pharmaceutical Sciences, 23(1), 2934.
El Kamari, F., El Omari, H., El-Mouhdi, K., Chlouchi, A., Harmouzi, A., Lhilali, I., ... Ousaaid, D., 2024. Effects of different solvents on the total phenol content, total flavonoid content, antioxidant, and antifungal activities of Micromeria graeca L. from Middle Atlas of Morocco. Biochemistry Research International, 2024, 9027997. https://doi.org/10.1155/2024/9027997
Euro+Med, 2006-onwards. Euro+Med PlantBase - the information resource for Euro-Mediterranean plant diversity, http://www.europlusmed.org (10 October 2024).
Gelenčir, N., 1989. Prirodno liječenje biljem i ostalim sredstvima. Nakladni zavod Znanje, Zagreb.
Gonçalves, S., Gomes, D., Costa, P., Romano, A., 2013. The phenolic content and antioxidant activity of infusions from Mediterranean medicinal plants. Industrial Crops and Products, 43, 465471. https://doi.org/10.1016/j.indcrop.2012.07.066
González, J.A., Verde, A., Pardo-de-Santayana, M., 2020. The Use of Plants for Animal Health Care in the Spanish Inventory of Traditional Knowledge. In: McGaw, L., Abdalla, M. (Eds.) Ethnoveterinary Medicine, Springer, Cham, 391426. https://doi.org/10.1007/978-3-030-32270-0_17
İlgün, S., Karatoprak, G.Ş., 2022. Evaluation of toxic effects of Dictamnus albus L. extracts on PC-12 and SHSY-5Y cell lines and investigation of antioxidant activity. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 25(Ek Sayı 2), 316325. https://doi.org/10.18016/ksutarimdoga.vi.1062822
Jomova, K., Raptova, R., Alomar, S.Y., Alwasel, S.H., Nepovimova, E., Kuca, K., Valko, M., 2023. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Archives of Toxicology, 97(10), 2499–2574. https://doi.org/10.1007/s00204-023-03562-9
Khennouf, S., Amira, S., Arrar, L., Baghiani, A., 2010. Effect of some phenolic compounds and Quercus tannins on lipid peroxidation. World Applied Sciences Journal, 8, 11441149.
Kulhari, A., Sheorayan, A., Bajar, S., Sarkar, S., Chaudhury, A., Kalia, R.K., 2013. Investigation of heavy metals in frequently utilized medicinal plants collected from environmentally diverse locations of north western India. SpringerPlus, 2, 676. https://doi.org/10.1186/2193-1801-2-676
Laughton, M.J., Halliwell, B., Evans, P.J., Hoult, J.R., 1989. Antioxidant and pro-oxidant actions of the plant phenolics quercetin, gossypol and myricetin. Effects on lipid peroxidation, hydroxyl radical generation and bleomycin-dependent damage to DNA. Biochemical Pharmacology, 38, 2859–2865. https://doi.org/10.1016/0006-2952(89)90442-5
Liu, Y., Cao, D., Liang, Y., Zhou, H., Wang, Y., 2021. Infrared spectral analysis and antioxidant activity of Dictamnus dasycarpus Turcz with different growth years. Journal of Molecular Structure, 1229, 129780. https://doi.org/10.1016/j.molstruc.2020.129780
Liu, Z., Ren, Z., Zhang, J., Chuang, C.C., Kandaswamy, E., Zhou, T., Zuo, L., 2018. Role of ROS and nutritional antioxidants in human diseases. Frontiers in Physiology, 9, 477. https://doi.org/10.3389/fphys.2018.00477
Liyana-Pathiranana, C.M., Shahidi, F., 2005. Antioxidant activity of commercial soft and hard wheat (Triticum aestivum L.) as affected by gastric pH conditions. Journal of Agricultural and Food Chemistry, 53(7), 24332440. https://doi.org/10.1021/jf049320i
Lv, M., Xu, P., Tian, Y., Liang, J., Gao, Y., Xu, F., … Sun, J., 2015. Medicinal uses, phytochemistry and pharmacology of the genus Dictamnus (Rutaceae). Journal of Ethnopharmacology, 171, 247–263. https://doi.org/10.1016/j.jep.2015.05.053
Martínez-Francés, V., Rivera, D., Heinrich, M., Obón, C., Ríos, S., 2015. An ethnopharmacological and historical analysis of "Dictamnus", a European traditional herbal medicine. Journal of Ethnopharmacology, 175, 390406. https://doi.org/10.1016/j.jep.2015.09.011
Milutinović, M., Nakarada, Đ., Božunović, J., Todorović, M., Gašić, U., Živković, S., ... Mišić, D., 2023. Solanum dulcamara L. berries: A convenient model system to study redox processes in relation to fruit ripening. Antioxidants, 12, 346. https://doi.org/10.3390/antiox12020346
Morgan, J., Connolly, E.L., 2013. Plant-soil interactions: Nutrient uptake. Nature Education Knowledge, 4(8), 2.
Muflihah, Y.M., Gollavelli, G., Ling, Y.C., 2021. Correlation study of antioxidant activity with phenolic and flavonoid compounds in 12 Indonesian indigenous herbs. Antioxidants, 10, 1530. https://doi.org/10.3390/antiox10101530
Nikolić, T., 2020. Flora Croatica 3. Alfa d.d., Zagreb.
Nissar, S., Zahoor, A., Raja, W.Y., Majid, N., Nawchoo, I.A., Bhat, Z.A., 2020. Heavy metal and mineral content assessment in Skimmia anquetilia and Dictamnus albus in Kashmir Himalaya: A comparative study. Plant Archives, 20(2), 67656770.
Nwozo, O.S., Effiong, E.M., Aja, P.M., Awuchi, C.G., 2023. Antioxidant, phytochemical, and therapeutic properties of medicinal plants: A review. International Journal of Food Properties, 26(1), 359388. https://doi.org/10.1080/10942912.2022.2157425
Pavlović, D.R., Zlatković, B., Živanović, S., Kitić, D., Golubović, T., 2018. Serbian Rutaceae species: Comparison of flavonoid contents, coumarin compounds and radical scavenging activity. Biologica Nyssana, 9(1), 3743. https://doi.org/10.5281/zenodo.1470848
Pequerul, A., Perez, C., Madero, P., Val, J., Mange, E., 1993. A rapid wet digestion method for plant analysis. In: Fragoso, M.A.C., Van Beusichern, M.L., Houwers, A. (eds.) Optimization of Plant Nutrition. Developments in Plant and Soil Sciences, 53, Springer, Dordrecht, 36. https://doi.org/10.1007/978-94-017-2496-8_1
Petkov, V., Slavova, I., Teneva, D., Mladenova, T., Stoyanov, P., Argirova, M., 2022. Phytochemical study and biological activity of three fern species of the Asplenium genus growing in Bulgaria. The Natural Products Journal, 12(6), 8290. https://doi.org/10.2174/2210315511666210512024716
Piluzza, G., Bullitta, S., 2011. Correlations between phenolic content and antioxidant properties in twenty-four plant species of traditional ethnoveterinary use in the Mediterranean area. Pharmaceutical Biology, 49, 240247. https://doi.org/10.3109/13880209.2010.501083
Popović, Z., Smiljanić, M., Kostić, M., Nikić, P., Janković, S., 2014. Wild flora and its usage in traditional phytotherapy (Deliblato Sands, Serbia, South East Europe). Indian Journal of Traditional Knowledge, 13(1), 935.
POWO, 2024. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew, https://powo.science.kew.org/ (10 October 2024).
Qin, Y., Quan, H.F., Zhou, X.R., Chen, S.J., Xia, W.X., Li, H., Huang, H.L., Fu, X.Y., Dong, L., 2021. The traditional uses, phytochemistry, pharmacology and toxicology of Dictamnus dasycarpus: A review. The Journal of Pharmacy and Pharmacology, 73(12), 1571–1591. https://doi.org/10.1093/jpp/rgab141
Rahman, M.M., Rahaman, M.S., Islam, M.R., Rahman, F., Mithi, F.M., Alqahtani, T., … Uddin, M.S., 2021. Role of phenolic compounds in human disease: Current knowledge and future prospects. Molecules, 27(1), 233. https://doi.org/10.3390/molecules27010233
Ren, M., Xu, W., Zhang, Y., Ni, L., Lin, Y., Zhang, X., Huang, M., 2020. Qualitative and quantitative analysis of phenolic compounds by UPLC-MS/MS and biological activities of Pholidota chinensis Lindl. Journal of Pharmaceutical and Biomedical Analysis, 187, 113350. https://doi.org/10.1016/j.jpba.2020.113350
Salmerón-Manzano, E., Garrido-Cardenas, J.A., Manzano-Agugliaro, F., 2020. Worldwide research trends on medicinal plants. International Journal of Environmental Research and Public Health, 17(10), 3376. https://doi.org/10.3390/ijerph17103376
Sarić, M., 1989. Medicinal plants of SR Serbia. Serbian Academy of Sciences and Arts, Belgrade.
Sevgi, K., Tepe, B., Sarikurkcu, C., 2015. Antioxidant and DNA damage protection potentials of selected phenolic acids. Food and Chemical Toxicology, 77, 1221. https://doi.org/10.1016/j.fct.2014.12.006
Shi, L., Zhao, W., Yang, Z., Subbiah, V., Suleria, H.A.R., 2022. Extraction and characterization of phenolic compounds and their potential antioxidant activities. Environmental Science and Pollution Research, 29, 8111281129. https://doi.org/10.1007/s11356-022-23337-6
Singleton, V.L., Rossi, J.A., 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144158. https://doi.org/10.5344/ajev.1965.16.3.144
Škrovánková, S., Mišurcová, L., Machů, L., 2012. Antioxidant activity and protecting health effects of common medicinal plants. Advances in Food and Nutrition Research, 67, 75139. https://doi.org/10.1016/B978-0-12-394598-3.00003-4
Spanierman, C.S., 2011. Iron toxicity in emergency medicine. http://emedicine.medscape.com/article/815213-overview#showall (1 November 2024).
Srivastava, V., Sarkar, A., Singh, S., Singh, P., De Araujo, A. S., Singh, R.P., 2017. Agroecological responses of heavy metal pollution with special emphasis on soil health and plant performances. Frontiers in Environmental Science, 5, 64. https://doi.org/10.3389/fenvs.2017.00064
Sulaiman, M.B., Adamu, A.M., Ali, S.B., Ezenobi, U.V., Gimba, A.M., Akinlotan, O.O., Abubakar, A., 2024. Heavy metal contamination in medicinal plants: Assessing carcinogenic and non-carcinogenic health risks. Discover Environment, 2(1), 11. https://doi.org/10.1007/s44274-024-00035-3
Tatipamula, V.B., Kukavica, B., 2021. Phenolic compounds as antidiabetic, anti‐inflammatory, and anticancer agents and improvement of their bioavailability by liposomes. Cell Biochemistry and Function, 39(8), 926944. https://doi.org/10.1002/cbf.3667
Theuma, M., Attard, E., 2020. From herbal substance to infusion: The fate of polyphenols and trace elements. Journal of Herbal Medicine, 21, 100347. https://doi.org/10.1016/j.hermed.2020.100347
Thiers, B.M., 2024. Index Herbariorum. https://sweetgum.nybg.org/science/ih/ (10 October 2024).
Townsend, C.C., 1968. Dictamnus L. In: Tutin, T.G., Heywood, V.H., Burges, N.A., Moore, D.M., Valentine, D.H., Walters, S.M., Webb, D.A. (eds.) Flora Europaea 2. Cambridge University Press, Cambridge, 229.
Tusevski, O., Kostovska, A., Iloska, A., Trajkovska, L., Simic, S.G., 2014. Phenolic production and antioxidant properties of some Macedonian medicinal plants. Central European Journal of Biology, 9, 888900. https://doi.org/10.2478/s11535-014-0322-1
Vinogradova, N., Glukhov, A., Chaplygin, V., Kumar, P., Mandzhieva, S., Minkina, T., Rajput, V.D., 2023. The content of heavy metals in medicinal plants in various environmental conditions: A review. Horticulturae, 9(2), 239. https://doi.org/10.3390/horticulturae9020239
Vuolo, M.M., Lima, V.S., Junior, M.R.M., 2019. Phenolic compounds: Structure, classification, and antioxidant power. In: Segura Campos, M.R. (Ed.) Bioactive compounds: Health Benefits and Potential Applications. Woodhead Publishing, Sawston, UK, 3350. https://doi.org/10.1016/B978-0-12-814774-0.00002-5
WHO, 2007. WHO guidelines for assessing quality of herbal medicines with reference to contaminants and residues. World Health Organization, Geneva, Switzerland.
Published
Issue
Section
License
Copyright (c) 2025 Siniša Škondrić, Tanja Trifković , Dijana Mihajlović, Đura Nakarada, Miloš Mojović, Biljana Kukavica

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



