Impact of Biosynthesized Zinc Oxide Nanoparticles on the Kidneys Tissues of Male Mice Experimentally Infected with Entamoeba histolytica

Authors

  • Laith A. Yaaqoob Department of Biotechnology, College of Science, Baghdad University, Iraq
  • Mohannad Hamid Jasim Biology Department, College of Education, Fallujah University, Iraq
  • Lima Tariq Youash Lazar Department of Basic Nursing Sciences, College of Nursing, University of Kirkuk, Iraq
  • Saade Abdalkareem Jasim Medical laboratory techniques department, College of Health and Medical Technology, University of Al-maarif, Anbar, Iraq
  • Thaer Abdulqader Salih Biology Department / College of Education for pure Sciences / Anbar university, Iraq

DOI:

https://doi.org/10.14720/abs.68.2.21341

Keywords:

amebiasis, zinc-oxide nanoparticles, Entamoeba histolytica

Abstract

Entamoeba histolytica has been detected in stool samples of patients attending the Children’s General Hospital in Kirkuk City. Zinc oxide nanoparticles (ZnO NPs) are biosynthesized by Pseudomonas aeruginosa, which produces the pigment pyocyanin that acts as an agent of reducing in the production of ZnO NPs. The purpose of this work was to ascertain how ZnO NPs might be used therapeutically to treat E. histolytica-infected mice's kidney tissues. Scanning electron microscopy used to characterize biosynthesized ZnO NPs , atomic force microscopy, Fourier transform infrared spectroscopy, UV-visible spectroscopy and X-ray diffraction. ZnO NPs were used to treat mice that had been experimentally infected with E. histolytica. Mouse kidneys were collected and divided into six groups for evaluation. Two groups served as negative and positive controls, respectively. Three other groups (four mice each) were treated with 30, 45, or 60 µg/mL ZnO NPs once daily for ten days. The final group was the uninfected group and treated with 30 µg/mL ZnO NPs. Mice treated with 30, 45, and 60 µg/mL ZnO NPs had kidney histological sections that resembled the negative control, demonstrating that the nanoparticles were effective against the parasite. The uninfected group treated with ZnO NPs showed no negative effects on the kidney tissue.

Metrics

Metrics Loading ...

References

Abdelnasir, S., Anwar, A., Kawish, M., Anwar, A., Shah, M., Siddique, R., Khan, N., 2020. Metronidazole conjugated magnetic nanoparticles loaded with amphotericin B exhibited potent effects against pathogenic Acanthamoeba castellanii belonging to the T4 genotype. AMB Express. 10: 1-11. https://doi.org/10.1186/s13568-020-01061-z

Akhtar, K., Khan, S., Khan, S., Asiri, A., 2018. Scanning electron microscopy: Principle and applications in nanomaterials characterization. In: Sharma, S. (Eds.) Handbook of Materials Characterization. Springer, pp. 113-145. Springer International Publishing. ‏ https://doi.org/10.1007/978-3-319-92955-2_4

Alaa Alden, M., Yaaqoob, L., 2022. Evaluation of the Biological Effect Synthesized Zinc Oxide Nanoparticles on Pseudomonas aeruginosa. Iraqi J. Agricult. Sci., 53(1), 27-37. ‏

Al-Bayati, A., Jihad, L., Al-Attar, Sh., 2023. The effects of Gastro-intestinal Parasites on haemato-biochemical parameters of sheep in Kirkuk province, Iraq. J. of Applied Vet. Sci., 8(4), 62-68. ‏ https://dx.doi.org/10.21608/javs.2023.220148.1253

Al-Taie, S., Al-Ugaili, D., Kasar, K., Yaaqoob, L., 2022. Antibacterial effects of Ceftriaxone/Zinc Oxide Nanoparticles Combination Against Ceftriaxone resistant Escherichia coli isolated from Urinary Tract Infections. Indian J. Forensic Med. Toxicol., 16(1), 1080-1088. https://doi.org/10.37506/ijfmt.v16i1.17638. ‏

Attiah, B., Obaid, H., Alsalihi, S., 2023. Assessment the Ag and ZnO biosynthesized nanoparticles effects on Giardia lamblia trophozoites which grown in HSP-1 culture media, NTU J. Pure Sci.. 12(1), 13-21. https://doi.org/10.56286/ntujps.v2i1.316 .

Auda, L., 2023. The synergistic effect of biogenic zinc oxide and silver nanoparticles on some regulatory swarming gens of Proteus mirabilis. (doctoral thesis), College of biotechnology, Al-Qasim Green Uni. Iraq, 188pp.

Baig, N., Kammakakam, I., Falath, W., 2021. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Adv. Mater., 2(6), 1821-1871. https://doi.org/10.1039/D0MA00807A

Barzinji, A. (2023). Parasitological Evaluation of the Purifying Performance of Wastewater Treatment Plants in Kirkuk, Iraq. Journal of Communicable Diseases. 55(4): 14-22. https://doi.org/10.24321/0019.5138.202348

Cheraghipour, K., Khalaf, A., Moradpour, K., Zivdari, M., Beiranvand, M., 2023. Synthesis, characterization, and antiparasitic effects of zinc oxide nanoparticles-eugenol nanosuspension against Toxoplasma gondii infection, Heliyon, 9(8), e19295. https://doi.org/10.1016/j.heliyon.2023.e19295

DeBritto, S., Gajbar, T., Satapute, P., Sundaram, L., Lakshmikantha, R., Jogaiah, S., Ito, S., 2020. Isolation and characterization of nutrient dependent pyocyanin from Pseudomonas aeruginosa and its dye and agrochemical properties. Sci. Rep., 10, 1542. https://doi.org/10.1038/s41598-020-58335-6

Deka, T., Das, M.K., Das, S., Singha, L.R., Das, P., 2020. Nanobiotechnology and Its Application in Nanomedicine: An Overview. In: Das, M.K., Pathak, Y.V. (Eds.) Nano Medicine and Nano Safety. Springer, Singapore. https://doi.org/10.1007/978-981-15-6255-6_1

Fadhil, F., Hadi, I., 2015. Preparation and characterization of zinc oxide nanoparticles by laser ablation of zinc in isopropanol. Eng. Technol. J., 33(5B), 791-798.‏

Fotedar, R., Stark, D., Beebe, N., Marriott, D., Ellis, J., Harkness, J., 2007. Laboratory diagnostic techniques for Entamoeba species. Clin. Microbiol. Rev., 20(3), 511-532. https://doi.org/10.1128/cmr.00004-07

Hamdy, D., Ismail, M., El-Askary, H., Abdel-Tawab, H., Ahmed, M., Fouad, F., Mohamed, F., 2023. Newly fabricated zinc oxide nanoparticles loaded materials for therapeutic nano delivery in experimental cryptosporidiosis. Scientific Reports, 13, 19650. https://doi.org/10.1038/s41598-023-46260-3

Isaac, U., Oyo-Ita, E., Igwe, N., Ije, E., 2023. Preparation of histology slides and photomicrographs: Indispensable techniques in anatomy education. Anatomy Journal of Africa, 12(1), 2252–2262. https://doi.org/10.4314/aja.v12i1.1

MacFaddin, J., 2000. Biochemical tests for identification of medical bacteria (3rd ed.). Philadelphia: Lippincott Williams & Wilkins.

Mandal, K., Katuwal, S., Tettey, F., Gupta, A., Bhattarai, S., Jaisi, N., Parajuli, N., 2022. Current research on zinc oxide nanoparticles: Synthesis, characterization, and biomedical applications. Nanomaterial., 12(17), 3066. https://doi.org/10.3390/nano12173066

Mendes, R., Dilarri, G., Forsan, F., Sapata, R., Lopes, M., de Moraes, B., Bidoia, D., 2022. Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens. Sci. Rep., 12(1), 2658. https://doi.org/10.1038/s41598-022-06657-y

Mihailovic, V., Katanic Stankovic, J., Selakovic, D., Rosic, G., 2021. An overview of the beneficial role of antioxidants in the treatment of nanoparticle-induced toxicities. Oxid. Med. Cell Longev., 2021, 1–21. https://doi.org/10.1155/2021/7244677

Mohamed, M., Jaafar, J., Ismail, A., Othman, M., Rahman, M., 2017. Fourier transform infrared (FTIR) spectroscopy. In: Hilal, N., Fauzi, A., Matsuura, T., Oatley-Radcliffe, D. (Eds.) Membrane characterization, Elsevier, pp. 3–29. https://doi.org/10.1016/B978-0-444-63776-5.00001-2

Raghunath, A., Perumal, E., 2017. Metal oxide nanoparticles as antimicrobial agents: A promise for the future. Int. J. Antimicrob. Agent., 49(2), 137–152. https://doi.org/10.1016/j.ijantimicag.2016.11.011

Razooki, M., Rabee, M., 2020. Evaluation of the toxicological effects of zinc oxide nanoparticles in albino male mice. Iraqi J. Sci., 61(1), 42–58. https://doi.org/10.24996/ijs.2020.61.1.5

Shakir, O., Abdulwahhab, I., 2018. Study of the effect of Klebsiella pneumoniae antigens on the histological structure of the kidney in laboratory rabbits infected with Entamoeba histolytica. J. Tikrit Univ. Agricult. Sci., 18(4), 139–145.

Siddiqui, R., Khatoon, B., Kawish, M., Sajeev, S., Faizi, S., Shah, R., Khan, A., 2024. The potential of nanocomposites (patuletin-conjugated with gallic acid-coated zinc oxide) against free-living amoebae pathogens. Int. Microbiol., 1–11. https://doi.org/10.1007/s10123-024-00584-w

Sun, W. (2018). Principles of Atomic Force Microscopy. In: Cai, J. (Eds.) Atomic Force Microscopy in Molecular and Cell Biology. Springer, Singapore. https://doi.org/10.1007/978-981-13-1510-7_1

Wijesinghe, G., Dilhari, A., Gayani, B., Kottegoda, N., Samaranayake, L., Weerasekera, M., 2019. Influence of laboratory culture media on in vitro growth, adhesion, and biofilm formation of Pseudomonas aeruginosa and Staphylococcus aureus. Med. Prin. Pract., 28(1), 28–35. https://doi.org/10.1159/000494757

Yimer, M., Zenebe, Y., Mulu, W., Abera, B., Saugar, J., 2017. Molecular prevalence of Entamoeba histolytica/dispar infection among patients attending four health centres in north-west Ethiopia. Trop.l Doct., 47(1), 11–15. https://doi.org/10.1177/0049475515627236

Downloads

Published

29.01.2025

Issue

Section

Original Research Paper

How to Cite

Yaaqoob, L. A., Hamid Jasim, M. ., Youash Lazar, L. T. ., Abdalkareem Jasim, S., & Salih, T. A. . (2025). Impact of Biosynthesized Zinc Oxide Nanoparticles on the Kidneys Tissues of Male Mice Experimentally Infected with Entamoeba histolytica. Acta Biologica Slovenica, 68(2), 5-13. https://doi.org/10.14720/abs.68.2.21341